EchoTracker: Advancing Myocardial Point Tracking in Echocardiography
- URL: http://arxiv.org/abs/2405.08587v1
- Date: Tue, 14 May 2024 13:24:51 GMT
- Title: EchoTracker: Advancing Myocardial Point Tracking in Echocardiography
- Authors: Md Abulkalam Azad, Artem Chernyshov, John Nyberg, Ingrid Tveten, Lasse Lovstakken, Håvard Dalen, Bjørnar Grenne, Andreas Østvik,
- Abstract summary: EchoTracker is a two-fold coarse-to-fine model that facilitates the tracking of queried points on a tissue surface across ultrasound image sequences.
Experiments demonstrate that the model outperforms SOTA methods, with an average position accuracy of 67% and a median trajectory error of 2.86 pixels.
This implies that learning-based point tracking can potentially improve performance and yield a higher diagnostic and prognostic value for clinical measurements.
- Score: 0.6263680699548959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tissue tracking in echocardiography is challenging due to the complex cardiac motion and the inherent nature of ultrasound acquisitions. Although optical flow methods are considered state-of-the-art (SOTA), they struggle with long-range tracking, noise occlusions, and drift throughout the cardiac cycle. Recently, novel learning-based point tracking techniques have been introduced to tackle some of these issues. In this paper, we build upon these techniques and introduce EchoTracker, a two-fold coarse-to-fine model that facilitates the tracking of queried points on a tissue surface across ultrasound image sequences. The architecture contains a preliminary coarse initialization of the trajectories, followed by reinforcement iterations based on fine-grained appearance changes. It is efficient, light, and can run on mid-range GPUs. Experiments demonstrate that the model outperforms SOTA methods, with an average position accuracy of 67% and a median trajectory error of 2.86 pixels. Furthermore, we show a relative improvement of 25% when using our model to calculate the global longitudinal strain (GLS) in a clinical test-retest dataset compared to other methods. This implies that learning-based point tracking can potentially improve performance and yield a higher diagnostic and prognostic value for clinical measurements than current techniques. Our source code is available at: https://github.com/riponazad/echotracker/.
Related papers
- Bidirectional Recurrence for Cardiac Motion Tracking with Gaussian Process Latent Coding [9.263168872795843]
GPTrack is a novel unsupervised framework crafted to explore the temporal and spatial dynamics of cardiac motion.
It enhances motion tracking by employing the sequential Gaussian Process in the latent space and encoding statistics by spatial information at each time stamp.
Our GPTrack significantly improves the precision of motion tracking in both 3D and 4D medical images while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-28T05:33:48Z) - Unsupervised 4D Cardiac Motion Tracking with Spatiotemporal Optical Flow Networks [7.920406261260867]
This paper presents a motion tracking method where unsupervised optical flow networks are designed with spatial reconstruction loss and temporal-consistency loss.
Our proposed loss functions make use of the pair-wise and temporal correlation to estimate cardiac motion from noisy background.
To the best of our knowledge, this is the first work performed that uses unsupervised end-to-end deep learning optical flow network for 4D cardiac motion tracking.
arXiv Detail & Related papers (2024-07-05T17:18:46Z) - Automatic Cardiac Pathology Recognition in Echocardiography Images Using Higher Order Dynamic Mode Decomposition and a Vision Transformer for Small Datasets [2.0286377328378737]
Heart diseases are the main international cause of human defunction. According to the WHO, nearly 18 million people decease each year because of heart diseases.
In this work, an automatic cardiac pathology recognition system based on a novel deep learning framework is proposed.
arXiv Detail & Related papers (2024-04-30T14:16:45Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Dense Optical Tracking: Connecting the Dots [82.79642869586587]
DOT is a novel, simple and efficient method for solving the problem of point tracking in a video.
We show that DOT is significantly more accurate than current optical flow techniques, outperforms sophisticated "universal trackers" like OmniMotion, and is on par with, or better than, the best point tracking algorithms like CoTracker.
arXiv Detail & Related papers (2023-12-01T18:59:59Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
We propose Motion Pyramid Networks, a novel deep learning-based approach for accurate and efficient cardiac motion estimation.
We predict and fuse a pyramid of motion fields from multiple scales of feature representations to generate a more refined motion field.
We then use a novel cyclic teacher-student training strategy to make the inference end-to-end and further improve the tracking performance.
arXiv Detail & Related papers (2020-06-28T21:03:19Z) - DENS-ECG: A Deep Learning Approach for ECG Signal Delineation [15.648061765081264]
This paper proposes a deep learning model for real-time segmentation of heartbeats.
The proposed algorithm, named as the DENS-ECG algorithm, combines convolutional neural network (CNN) and long short-term memory (LSTM) model.
arXiv Detail & Related papers (2020-05-18T13:13:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - A Graph-constrained Changepoint Detection Approach for ECG Segmentation [5.209323879611983]
We introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step.
Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55.
arXiv Detail & Related papers (2020-04-24T23:41:41Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
We employ learnable optimizations to improve robustness and speed up solver convergence.
First, we upgrade the tracking objective by integrating an alignment data term on deep features which are learned end-to-end through CNN.
Second, we bridge the gap between the preconditioning technique and learning method by introducing a ConditionNet which is trained to generate a preconditioner.
arXiv Detail & Related papers (2020-03-27T04:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.