Unsupervised 4D Cardiac Motion Tracking with Spatiotemporal Optical Flow Networks
- URL: http://arxiv.org/abs/2407.04663v1
- Date: Fri, 5 Jul 2024 17:18:46 GMT
- Title: Unsupervised 4D Cardiac Motion Tracking with Spatiotemporal Optical Flow Networks
- Authors: Long Teng, Wei Feng, Menglong Zhu, Xinchao Li,
- Abstract summary: This paper presents a motion tracking method where unsupervised optical flow networks are designed with spatial reconstruction loss and temporal-consistency loss.
Our proposed loss functions make use of the pair-wise and temporal correlation to estimate cardiac motion from noisy background.
To the best of our knowledge, this is the first work performed that uses unsupervised end-to-end deep learning optical flow network for 4D cardiac motion tracking.
- Score: 7.920406261260867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiac motion tracking from echocardiography can be used to estimate and quantify myocardial motion within a cardiac cycle. It is a cost-efficient and effective approach for assessing myocardial function. However, ultrasound imaging has the inherent characteristics of spatially low resolution and temporally random noise, which leads to difficulties in obtaining reliable annotation. Thus it is difficult to perform supervised learning for motion tracking. In addition, there is no end-to-end unsupervised method currently in the literature. This paper presents a motion tracking method where unsupervised optical flow networks are designed with spatial reconstruction loss and temporal-consistency loss. Our proposed loss functions make use of the pair-wise and temporal correlation to estimate cardiac motion from noisy background. Experiments using a synthetic 4D echocardiography dataset has shown the effectiveness of our approach, and its superiority over existing methods on both accuracy and running speed. To the best of our knowledge, this is the first work performed that uses unsupervised end-to-end deep learning optical flow network for 4D cardiac motion tracking.
Related papers
- Bidirectional Recurrence for Cardiac Motion Tracking with Gaussian Process Latent Coding [9.263168872795843]
GPTrack is a novel unsupervised framework crafted to explore the temporal and spatial dynamics of cardiac motion.
It enhances motion tracking by employing the sequential Gaussian Process in the latent space and encoding statistics by spatial information at each time stamp.
Our GPTrack significantly improves the precision of motion tracking in both 3D and 4D medical images while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-28T05:33:48Z) - EchoTracker: Advancing Myocardial Point Tracking in Echocardiography [0.6263680699548959]
EchoTracker is a two-fold coarse-to-fine model that facilitates the tracking of queried points on a tissue surface across ultrasound image sequences.
Experiments demonstrate that the model outperforms SOTA methods, with an average position accuracy of 67% and a median trajectory error of 2.86 pixels.
This implies that learning-based point tracking can potentially improve performance and yield a higher diagnostic and prognostic value for clinical measurements.
arXiv Detail & Related papers (2024-05-14T13:24:51Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - Continuous 3D Myocardial Motion Tracking via Echocardiography [30.19879953016694]
Myocardial motion tracking is an essential clinical tool in the prevention and detection of cardiovascular diseases.
Current techniques suffer from incomplete and inaccurate motion estimation of the myocardium in both spatial and temporal dimensions.
This paper introduces the Neural Cardiac Motion Field (NeuralCMF) to model the 3D structure and the comprehensive 6D forward/backward motion of the heart.
arXiv Detail & Related papers (2023-10-04T13:11:20Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - DeepTag: An Unsupervised Deep Learning Method for Motion Tracking on
Cardiac Tagging Magnetic Resonance Images [10.434681088538866]
We propose a novel deep learning-based fully unsupervised method for in vivo motion tracking on t-MRI images.
Our method has been validated on a representative clinical t-MRI dataset.
arXiv Detail & Related papers (2021-03-04T00:42:11Z) - Anatomy-Aware Cardiac Motion Estimation [11.680533842892107]
Myocardium feature tracking can directly estimate cardiac motion from cine MRI.
Current deep learning-based FT methods may result in unrealistic myocardium shapes.
We propose a novel Anatomy-Aware Tracker (AATracker) for cardiac motion estimation.
arXiv Detail & Related papers (2020-08-17T19:14:32Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
We propose Motion Pyramid Networks, a novel deep learning-based approach for accurate and efficient cardiac motion estimation.
We predict and fuse a pyramid of motion fields from multiple scales of feature representations to generate a more refined motion field.
We then use a novel cyclic teacher-student training strategy to make the inference end-to-end and further improve the tracking performance.
arXiv Detail & Related papers (2020-06-28T21:03:19Z) - A Deep Learning Approach for Motion Forecasting Using 4D OCT Data [69.62333053044712]
We propose 4D-temporal deep learning for end-to-end motion forecasting and estimation using a stream of OCT volumes.
Our best performing 4D method achieves motion forecasting with an overall average correlation of 97.41%, while also improving motion estimation performance by a factor of 2.5 compared to a previous 3D approach.
arXiv Detail & Related papers (2020-04-21T15:59:53Z) - Spatio-Temporal Deep Learning Methods for Motion Estimation Using 4D OCT
Image Data [63.73263986460191]
Localizing structures and estimating the motion of a specific target region are common problems for navigation during surgical interventions.
We investigate whether using a temporal stream of OCT image volumes can improve deep learning-based motion estimation performance.
Using 4D information for the model input improves performance while maintaining reasonable inference times.
arXiv Detail & Related papers (2020-04-21T15:43:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.