論文の概要: Dynamic NeRF: A Review
- arxiv url: http://arxiv.org/abs/2405.08609v1
- Date: Tue, 14 May 2024 13:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 13:59:04.675120
- Title: Dynamic NeRF: A Review
- Title(参考訳): Dynamic NeRF: レビュー
- Authors: Jinwei Lin,
- Abstract要約: NeRFの最初の研究が提案された後、NeRFは堅牢な開発力を獲得し、3Dモデリング、表現、再構築の領域でブームとなっている。
本稿では,Dynamci NeRFの開発と実装の原則について,詳細かつ豊富な発表を行った。
ダイナミックNeRFの主な原理と開発は2021年から2023年にかけて、ダイナミックNeRFプロジェクトの大半を含む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Field(NeRF) is an novel implicit method to achieve the 3D reconstruction and representation with a high resolution. After the first research of NeRF is proposed, NeRF has gained a robust developing power and is booming in the 3D modeling, representation and reconstruction areas. However the first and most of the followed research projects based on NeRF is static, which are weak in the practical applications. Therefore, more researcher are interested and focused on the study of dynamic NeRF that is more feasible and useful in practical applications or situations. Compared with the static NeRF, implementing the Dynamic NeRF is more difficult and complex. But Dynamic is more potential in the future even is the basic of Editable NeRF. In this review, we made a detailed and abundant statement for the development and important implementation principles of Dynamci NeRF. The analysis of main principle and development of Dynamic NeRF is from 2021 to 2023, including the most of the Dynamic NeRF projects. What is more, with colorful and novel special designed figures and table, We also made a detailed comparison and analysis of different features of various of Dynamic. Besides, we analyzed and discussed the key methods to implement a Dynamic NeRF. The volume of the reference papers is large. The statements and comparisons are multidimensional. With a reading of this review, the whole development history and most of the main design method or principles of Dynamic NeRF can be easy understood and gained.
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(NeRF)は高分解能で3次元再構成と表現を実現する新しい暗黙の手法である。
NeRFの最初の研究が提案された後、NeRFは堅牢な開発力を獲得し、3Dモデリング、表現、再構築の領域でブームとなっている。
しかし、NeRFに基づく最初の研究プロジェクトとほとんどの研究プロジェクトは静的であり、実際的な応用には弱い。
そのため、より多くの研究者が、実用的な応用や状況においてより実現可能で有用な動的NeRFの研究に興味を持ち、焦点を当てている。
静的NeRFと比較すると、動的NeRFの実装はより難しく複雑である。
しかし将来的には、DynamicがEditable NeRFの基本になる可能性も高まっている。
本稿では,Dynamci NeRFの開発と実装の原則について,詳細かつ豊富な発表を行った。
ダイナミックNeRFの主な原理と開発は2021年から2023年にかけて、ダイナミックNeRFプロジェクトの大半を含む。
さらに、カラフルで斬新なデザインのフィギュアとテーブルを用いて、Dynamicのさまざまな特徴の詳細な比較と分析を行った。
さらに、動的NeRFを実装するための鍵となる手法を解析し、検討した。
参考書類のボリュームは大きい。
文と比較は多次元である。
このレビューを読めば、開発履歴全体と、Dynamic NeRFの主要な設計方法や原則のほとんどを簡単に理解し得る。
関連論文リスト
- NeRF-DetS: Enhancing Multi-View 3D Object Detection with Sampling-adaptive Network of Continuous NeRF-based Representation [60.47114985993196]
NeRF-Detは、新しいビュー演算と3D知覚のタスクを統一する。
我々は,新しい3次元知覚ネットワーク構造であるNeRF-DetSを導入する。
NeRF-DetSはScanNetV2データセット上で競合するNeRF-Detより優れている。
論文 参考訳(メタデータ) (2024-04-22T06:59:03Z) - Knowledge NeRF: Few-shot Novel View Synthesis for Dynamic Articulated Objects [8.981452149411714]
本稿では,動的シーンのための新しいビューを合成するための知識NeRFを提案する。
我々は、音声オブジェクトに対してNeRFモデルを事前訓練し、音声オブジェクトが移動すると、新しい状態における新しいビューを生成することを学習する。
論文 参考訳(メタデータ) (2024-03-31T12:45:23Z) - Prompt2NeRF-PIL: Fast NeRF Generation via Pretrained Implicit Latent [61.56387277538849]
本稿では,3次元シーンの直接条件付けと高速なNeRFパラメータ生成のための高速なNeRF生成について検討する。
Prompt2NeRF-PILは、単一の前方通過で様々な3Dオブジェクトを生成することができる。
我々は,テキストからNeRFモデルDreamFusionと画像からNeRF手法Zero-1-to-3の3次元再構成速度を3倍から5倍に高速化することを示す。
論文 参考訳(メタデータ) (2023-12-05T08:32:46Z) - InsertNeRF: Instilling Generalizability into NeRF with HyperNet Modules [23.340064406356174]
ニューラル・ラジアンス・フィールド(NeRF)を新しいシーンに一般化することは大きな課題である。
InsertNeRF, INStilling gEneRalizabiliTy into NeRF。
論文 参考訳(メタデータ) (2023-08-26T14:50:24Z) - DReg-NeRF: Deep Registration for Neural Radiance Fields [66.69049158826677]
我々は,人間の介入なしにオブジェクト中心のアノテートシーンにおけるNeRF登録問題を解くためにDReg-NeRFを提案する。
提案手法は,SOTAポイントクラウド登録方式を大きなマージンで打ち負かす。
論文 参考訳(メタデータ) (2023-08-18T08:37:49Z) - Learning a Diffusion Prior for NeRFs [84.99454404653339]
正規化グリッド上に符号化されたNeRFを生成するために拡散モデルを提案する。
提案モデルでは,現実的なNeRFのサンプル化が可能である一方で,条件付き世代を許容すると同時に,特定の観察をガイダンスとして与えることができることを示す。
論文 参考訳(メタデータ) (2023-04-27T19:24:21Z) - FeatureNeRF: Learning Generalizable NeRFs by Distilling Foundation
Models [21.523836478458524]
一般化可能なNeRFに関する最近の研究は、単一または少数の画像からの新規なビュー合成に関する有望な結果を示している。
本研究では,事前学習された視覚モデルを蒸留することにより,一般化可能なNeRFを学習するためのFeatureNeRFという新しいフレームワークを提案する。
一般化可能な3次元特徴抽出器としてのFeatureNeRFの有効性を実証した。
論文 参考訳(メタデータ) (2023-03-22T17:57:01Z) - FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency
Regularization [32.1581416980828]
本稿では、従来の手法よりも優れた驚くほど単純なベースラインである周波数正規化NeRF(FreeNeRF)を提案する。
我々は、数ショットのニューラルレンダリングにおける重要な課題を分析し、NeRFのトレーニングにおいて周波数が重要な役割を果たすことを発見した。
論文 参考訳(メタデータ) (2023-03-13T18:59:03Z) - Correspondence Distillation from NeRF-based GAN [135.99756183251228]
神経放射野(NeRF)は、物体やシーンの微細な詳細を保存するための有望な結果を示している。
同じカテゴリの異なるNeRFをまたいで密度の高い対応を構築することは、依然として未解決の問題である。
トレーニング済みのNeRFベースGANにカプセル化されているリッチなセマンティクスと構造的先行性を活用することで,これらの課題を回避可能であることを示す。
論文 参考訳(メタデータ) (2022-12-19T18:54:59Z) - NeRF: Neural Radiance Field in 3D Vision, A Comprehensive Review [19.67372661944804]
ニューラル・ラジアンス・フィールド(NeRF)は近年,コンピュータビジョンの分野で重要な発展を遂げている。
NeRFモデルは、ロボット工学、都市マッピング、自律ナビゲーション、仮想現実/拡張現実など、さまざまな応用を見出している。
論文 参考訳(メタデータ) (2022-10-01T21:35:11Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
我々は,NeRFトレーニングの正規化にロバストなデータ拡張のパワーを初めてもたらすAugmented NeRF(Aug-NeRF)を提案する。
提案手法では,最悪の場合の摂動を3段階のNeRFパイプラインにシームレスにブレンドする。
Aug-NeRFは、新しいビュー合成と基礎となる幾何再構成の両方において、NeRF性能を効果的に向上させる。
論文 参考訳(メタデータ) (2022-07-04T02:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。