RMT-BVQA: Recurrent Memory Transformer-based Blind Video Quality Assessment for Enhanced Video Content
- URL: http://arxiv.org/abs/2405.08621v5
- Date: Thu, 10 Oct 2024 20:32:01 GMT
- Title: RMT-BVQA: Recurrent Memory Transformer-based Blind Video Quality Assessment for Enhanced Video Content
- Authors: Tianhao Peng, Chen Feng, Duolikun Danier, Fan Zhang, Benoit Vallade, Alex Mackin, David Bull,
- Abstract summary: We propose a novel blind deep video quality assessment (VQA) method specifically for enhanced video content.
It employs a new Recurrent Memory Transformer (RMT) based network architecture to obtain video quality representations.
The extracted quality representations are then combined through linear regression to generate video-level quality indices.
- Score: 7.283653823423298
- License:
- Abstract: With recent advances in deep learning, numerous algorithms have been developed to enhance video quality, reduce visual artifacts, and improve perceptual quality. However, little research has been reported on the quality assessment of enhanced content - the evaluation of enhancement methods is often based on quality metrics that were designed for compression applications. In this paper, we propose a novel blind deep video quality assessment (VQA) method specifically for enhanced video content. It employs a new Recurrent Memory Transformer (RMT) based network architecture to obtain video quality representations, which is optimized through a novel content-quality-aware contrastive learning strategy based on a new database containing 13K training patches with enhanced content. The extracted quality representations are then combined through linear regression to generate video-level quality indices. The proposed method, RMT-BVQA, has been evaluated on the VDPVE (VQA Dataset for Perceptual Video Enhancement) database through a five-fold cross validation. The results show its superior correlation performance when compared to ten existing no-reference quality metrics.
Related papers
- Benchmarking AIGC Video Quality Assessment: A Dataset and Unified Model [54.69882562863726]
We try to systemically investigate the AIGC-VQA problem from both subjective and objective quality assessment perspectives.
We evaluate the perceptual quality of AIGC videos from three dimensions: spatial quality, temporal quality, and text-to-video alignment.
We propose a Unify Generated Video Quality assessment (UGVQ) model to comprehensively and accurately evaluate the quality of AIGC videos.
arXiv Detail & Related papers (2024-07-31T07:54:26Z) - ReLaX-VQA: Residual Fragment and Layer Stack Extraction for Enhancing Video Quality Assessment [35.00766551093652]
We propose ReLaX-VQA, a novel No-Reference Video Quality Assessment (NR-VQA) model.
ReLaX-VQA uses fragments of residual frames and optical flow, along with different expressions of spatial features of the sampled frames, to enhance motion and spatial perception.
We will open source the code and trained models to facilitate further research and applications of NR-VQA.
arXiv Detail & Related papers (2024-07-16T08:33:55Z) - CLIPVQA:Video Quality Assessment via CLIP [56.94085651315878]
We propose an efficient CLIP-based Transformer method for the VQA problem ( CLIPVQA)
The proposed CLIPVQA achieves new state-of-the-art VQA performance and up to 37% better generalizability than existing benchmark VQA methods.
arXiv Detail & Related papers (2024-07-06T02:32:28Z) - Enhancing Blind Video Quality Assessment with Rich Quality-aware Features [79.18772373737724]
We present a simple but effective method to enhance blind video quality assessment (BVQA) models for social media videos.
We explore rich quality-aware features from pre-trained blind image quality assessment (BIQA) and BVQA models as auxiliary features.
Experimental results demonstrate that the proposed model achieves the best performance on three public social media VQA datasets.
arXiv Detail & Related papers (2024-05-14T16:32:11Z) - KVQ: Kwai Video Quality Assessment for Short-form Videos [24.5291786508361]
We establish the first large-scale Kaleidoscope short Video database for Quality assessment, KVQ, which comprises 600 user-uploaded short videos and 3600 processed videos.
We propose the first short-form video quality evaluator, i.e., KSVQE, which enables the quality evaluator to identify the quality-determined semantics with the content understanding of large vision language models.
arXiv Detail & Related papers (2024-02-11T14:37:54Z) - Perceptual Video Quality Assessment: A Survey [63.61214597655413]
Perceptual video quality assessment plays a vital role in the field of video processing.
Various subjective and objective video quality assessment studies have been conducted over the past two decades.
This survey provides an up-to-date and comprehensive review of these video quality assessment studies.
arXiv Detail & Related papers (2024-02-05T16:13:52Z) - High Visual-Fidelity Learned Video Compression [6.609832462227998]
We propose a novel High Visual-Fidelity Learned Video Compression framework (HVFVC)
Specifically, we design a novel confidence-based feature reconstruction method to address the issue of poor reconstruction in newly-emerged regions.
Extensive experiments have shown that the proposed HVFVC achieves excellent perceptual quality, outperforming the latest VVC standard with only 50% required.
arXiv Detail & Related papers (2023-10-07T03:27:45Z) - Leveraging Video Coding Knowledge for Deep Video Enhancement [6.746400031322727]
This study proposes a novel framework that leverages the low-delay configuration of video compression to enhance the existing state-of-the-art method, BasicVSR++.
We incorporate a context-adaptive video fusion method to enhance the final quality of compressed videos.
The proposed approach has been evaluated in the NTIRE22 challenge, a benchmark for video restoration and enhancement, and achieved improvements in both quantitative metrics and visual quality compared to the previous method.
arXiv Detail & Related papers (2023-02-27T09:00:29Z) - Video compression dataset and benchmark of learning-based video-quality
metrics [55.41644538483948]
We present a new benchmark for video-quality metrics that evaluates video compression.
It is based on a new dataset consisting of about 2,500 streams encoded using different standards.
Subjective scores were collected using crowdsourced pairwise comparisons.
arXiv Detail & Related papers (2022-11-22T09:22:28Z) - Deep Quality Assessment of Compressed Videos: A Subjective and Objective
Study [23.3509109592315]
In the video coding process, the perceived quality of a compressed video is evaluated by full-reference quality evaluation metrics.
To solve this problem, it is critical to design no-reference compressed video quality assessment algorithms.
In this work, a semi-automatic labeling method is adopted to build a large-scale compressed video quality database.
arXiv Detail & Related papers (2022-05-07T10:50:06Z) - UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated
Content [59.13821614689478]
Blind quality prediction of in-the-wild videos is quite challenging, since the quality degradations of content are unpredictable, complicated, and often commingled.
Here we contribute to advancing the problem by conducting a comprehensive evaluation of leading VQA models.
By employing a feature selection strategy on top of leading VQA model features, we are able to extract 60 of the 763 statistical features used by the leading models.
Our experimental results show that VIDEVAL achieves state-of-theart performance at considerably lower computational cost than other leading models.
arXiv Detail & Related papers (2020-05-29T00:39:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.