The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks
- URL: http://arxiv.org/abs/2405.08886v1
- Date: Tue, 14 May 2024 18:05:19 GMT
- Title: The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks
- Authors: Ziquan Liu, Yufei Cui, Yan Yan, Yi Xu, Xiangyang Ji, Xue Liu, Antoni B. Chan,
- Abstract summary: In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
- Score: 90.52808174102157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In safety-critical applications such as medical imaging and autonomous driving, where decisions have profound implications for patient health and road safety, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks and reliable uncertainty quantification in decision-making. With extensive research focused on enhancing adversarial robustness through various forms of adversarial training (AT), a notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models. To address this gap, this study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks within the adversarial defense community. It is first unveiled that existing CP methods do not produce informative prediction sets under the commonly used $l_{\infty}$-norm bounded attack if the model is not adversarially trained, which underpins the importance of adversarial training for CP. Our paper next demonstrates that the prediction set size (PSS) of CP using adversarially trained models with AT variants is often worse than using standard AT, inspiring us to research into CP-efficient AT for improved PSS. We propose to optimize a Beta-weighting loss with an entropy minimization regularizer during AT to improve CP-efficiency, where the Beta-weighting loss is shown to be an upper bound of PSS at the population level by our theoretical analysis. Moreover, our empirical study on four image classification datasets across three popular AT baselines validates the effectiveness of the proposed Uncertainty-Reducing AT (AT-UR).
Related papers
- Game-Theoretic Defenses for Robust Conformal Prediction Against Adversarial Attacks in Medical Imaging [12.644923600594176]
Adversarial attacks pose significant threats to the reliability and safety of deep learning models.
This paper introduces a novel framework that integrates conformal prediction with game-theoretic defensive strategies.
arXiv Detail & Related papers (2024-11-07T02:20:04Z) - Perturbation-Invariant Adversarial Training for Neural Ranking Models:
Improving the Effectiveness-Robustness Trade-Off [107.35833747750446]
adversarial examples can be crafted by adding imperceptible perturbations to legitimate documents.
This vulnerability raises significant concerns about their reliability and hinders the widespread deployment of NRMs.
In this study, we establish theoretical guarantees regarding the effectiveness-robustness trade-off in NRMs.
arXiv Detail & Related papers (2023-12-16T05:38:39Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Consistent Valid Physically-Realizable Adversarial Attack against
Crowd-flow Prediction Models [4.286570387250455]
deep learning (DL) models can effectively learn city-wide crowd-flow patterns.
DL models have been known to perform poorly on inconspicuous adversarial perturbations.
arXiv Detail & Related papers (2023-03-05T13:30:25Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Improving White-box Robustness of Pre-processing Defenses via Joint Adversarial Training [106.34722726264522]
A range of adversarial defense techniques have been proposed to mitigate the interference of adversarial noise.
Pre-processing methods may suffer from the robustness degradation effect.
A potential cause of this negative effect is that adversarial training examples are static and independent to the pre-processing model.
We propose a method called Joint Adversarial Training based Pre-processing (JATP) defense.
arXiv Detail & Related papers (2021-06-10T01:45:32Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - On the Generalization Properties of Adversarial Training [21.79888306754263]
This paper studies the generalization performance of a generic adversarial training algorithm.
A series of numerical studies are conducted to demonstrate how the smoothness and L1 penalization help improve the adversarial robustness of models.
arXiv Detail & Related papers (2020-08-15T02:32:09Z) - Adversary Agnostic Robust Deep Reinforcement Learning [23.9114110755044]
Deep reinforcement learning policies are deceived by perturbations during training.
Previous approaches assume that the knowledge of adversaries can be added into the training process.
We propose an adversary robust DRL paradigm that does not require learning from adversaries.
arXiv Detail & Related papers (2020-08-14T06:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.