Preliminary Investigation into Uncertainty-Aware Attack Stage Classification
- URL: http://arxiv.org/abs/2508.00368v1
- Date: Fri, 01 Aug 2025 06:58:00 GMT
- Title: Preliminary Investigation into Uncertainty-Aware Attack Stage Classification
- Authors: Alessandro Gaudenzi, Lorenzo Nodari, Lance Kaplan, Alessandra Russo, Murat Sensoy, Federico Cerutti,
- Abstract summary: This work addresses the problem of attack stage inference under uncertainty.<n>We propose a classification approach based on Evidential Deep Learning (EDL), which models predictive uncertainty by outputting parameters of a Dirichlet distribution over possible stages.<n>Preliminary experiments in a simulated environment demonstrate that the proposed model can accurately infer the stage of an attack with confidence.
- Score: 81.28215542218724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced Persistent Threats (APTs) represent a significant challenge in cybersecurity due to their prolonged, multi-stage nature and the sophistication of their operators. Traditional detection systems typically focus on identifying malicious activity in binary terms (benign or malicious) without accounting for the progression of an attack. However, effective response strategies depend on accurate inference of the attack's current stage, as countermeasures must be tailored to whether an adversary is in the early reconnaissance phase or actively conducting exploitation or exfiltration. This work addresses the problem of attack stage inference under uncertainty, with a focus on robustness to out-of-distribution (OOD) inputs. We propose a classification approach based on Evidential Deep Learning (EDL), which models predictive uncertainty by outputting parameters of a Dirichlet distribution over possible stages. This allows the system not only to predict the most likely stage of an attack but also to indicate when it is uncertain or the input lies outside the training distribution. Preliminary experiments in a simulated environment demonstrate that the proposed model can accurately infer the stage of an attack with calibrated confidence while effectively detecting OOD inputs, which may indicate changes in the attackers' tactics. These results support the feasibility of deploying uncertainty-aware models for staged threat detection in dynamic and adversarial environments.
Related papers
- Explainer-guided Targeted Adversarial Attacks against Binary Code Similarity Detection Models [12.524811181751577]
We propose a novel optimization for adversarial attacks against BCSD models.<n>In particular, we aim to improve the attacks in a challenging scenario, where the attack goal is to limit the model predictions to a specific range.<n>Our attack leverages the superior capability of black-box, model-agnostic explainers in interpreting the model decision boundaries.
arXiv Detail & Related papers (2025-06-05T08:29:19Z) - On the Robustness of Adversarial Training Against Uncertainty Attacks [9.180552487186485]
In learning problems, the noise inherent to the task at hand hinders the possibility to infer without a certain degree of uncertainty.<n>In this work, we reveal both empirically and theoretically that defending against adversarial examples, i.e., carefully perturbed samples that cause misclassification, guarantees a more secure, trustworthy uncertainty estimate.<n>To support our claims, we evaluate multiple adversarial-robust models from the publicly available benchmark RobustBench on the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2024-10-29T11:12:44Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - Adversarial Attacks Against Uncertainty Quantification [10.655660123083607]
This work focuses on a different adversarial scenario in which the attacker is still interested in manipulating the uncertainty estimate.
In particular, the goal is to undermine the use of machine-learning models when their outputs are consumed by a downstream module or by a human operator.
arXiv Detail & Related papers (2023-09-19T12:54:09Z) - The Adversarial Implications of Variable-Time Inference [47.44631666803983]
We present an approach that exploits a novel side channel in which the adversary simply measures the execution time of the algorithm used to post-process the predictions of the ML model under attack.
We investigate leakage from the non-maximum suppression (NMS) algorithm, which plays a crucial role in the operation of object detectors.
We demonstrate attacks against the YOLOv3 detector, leveraging the timing leakage to successfully evade object detection using adversarial examples, and perform dataset inference.
arXiv Detail & Related papers (2023-09-05T11:53:17Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
We propose a novel adversarial backdoor attack against trajectory prediction models.
Our attack affects the victim at training time via naturalistic, hence stealthy, poisoned samples crafted using a novel two-step approach.
We show that the proposed attack is highly effective, as it can significantly hinder the performance of prediction models.
arXiv Detail & Related papers (2023-06-27T19:15:06Z) - Consistent Valid Physically-Realizable Adversarial Attack against
Crowd-flow Prediction Models [4.286570387250455]
deep learning (DL) models can effectively learn city-wide crowd-flow patterns.
DL models have been known to perform poorly on inconspicuous adversarial perturbations.
arXiv Detail & Related papers (2023-03-05T13:30:25Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
We study PAC learnability and certification under instance-targeted poisoning attacks.
We show that when the budget of the adversary scales sublinearly with the sample complexity, PAC learnability and certification are achievable.
We empirically study the robustness of K nearest neighbour, logistic regression, multi-layer perceptron, and convolutional neural network on real data sets.
arXiv Detail & Related papers (2021-05-18T17:48:15Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.