論文の概要: Deep Learning in Earthquake Engineering: A Comprehensive Review
- arxiv url: http://arxiv.org/abs/2405.09021v1
- Date: Wed, 15 May 2024 01:22:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 14:45:30.655764
- Title: Deep Learning in Earthquake Engineering: A Comprehensive Review
- Title(参考訳): 地震工学における深層学習 : 総合的な展望
- Authors: Yazhou Xie,
- Abstract要約: この文献は、Deep Learning (DL) と地震工学を横断する一貫したスコープを体系的にカバーする包括的なレビューを欠いている。
本稿では、まず、多層パーセプトロン(MLP)、畳み込みニューラルネットワーク(CNN)、再帰ニューラルネットワーク(RNN)、生成的敵ネットワーク(GAN)、オートエンコーダ(AE)、転送学習(TL)、強化学習(RL)、グラフニューラルネットワーク(GNN)など、様々なDL技術の解明に向けた方法論的進歩について論じる。
その後、視覚に基づく地震被害評価、構造的特徴、地震の需要、など、さまざまな研究分野にわたるDL応用を探求することで、徹底的な研究展望が明らかにされる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This article surveys the growing interest in utilizing Deep Learning (DL) as a powerful tool to address challenging problems in earthquake engineering. Despite decades of advancement in domain knowledge, issues such as uncertainty in earthquake occurrence, unpredictable seismic loads, nonlinear structural responses, and community engagement remain difficult to tackle using domain-specific methods. DL offers promising solutions by leveraging its data-driven capacity for nonlinear mapping, sequential data modeling, automatic feature extraction, dimensionality reduction, optimal decision-making, etc. However, the literature lacks a comprehensive review that systematically covers a consistent scope intersecting DL and earthquake engineering. To bridge the gap, the article first discusses methodological advances to elucidate various applicable DL techniques, such as multi-layer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), generative adversarial network (GAN), autoencoder (AE), transfer learning (TL), reinforcement learning (RL), and graph neural network (GNN). A thorough research landscape is then disclosed by exploring various DL applications across different research topics, including vision-based seismic damage assessment and structural characterization, seismic demand and damage state prediction, seismic response history prediction, regional seismic risk assessment and community resilience, ground motion (GM) for engineering use, seismic response control, and the inverse problem of system/damage identification. Suitable DL techniques for each research topic are identified, emphasizing the preeminence of CNN for vision-based tasks, RNN for sequential data, RL for community resilience, and unsupervised learning for GM analysis. The article also discusses opportunities and challenges for leveraging DL in earthquake engineering research and practice.
- Abstract(参考訳): 本稿では, 地震工学における課題に対処するための強力なツールとして, 深層学習(DL)を活用することへの関心の高まりについて調査する。
ドメイン知識の数十年にわたる進歩にもかかわらず、地震の発生の不確実性、予測不可能な地震荷重、非線形構造応答、およびコミュニティエンゲージメントといった問題は、ドメイン固有の手法による対処が難しいままである。
DLは、非線形マッピング、シーケンシャルなデータモデリング、自動特徴抽出、次元削減、最適な意思決定などにデータ駆動能力を活用することで、有望なソリューションを提供します。
しかし、この文献は、DLと地震工学を横断する一貫した範囲を体系的に網羅する包括的なレビューを欠いている。
このギャップを埋めるために、この記事はまず、多層パーセプトロン(MLP)、畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、ジェネレーティブ敵ネットワーク(GAN)、オートエンコーダ(AE)、トランスファーラーニング(TL)、強化学習(RL)、グラフニューラルネットワーク(GNN)など、様々なDL技術を解明するための方法論的な進歩について議論する。
次に、視覚に基づく地震被害評価と構造的特徴、地震需要と被害状態予測、地震応答履歴予測、地域地震リスク評価とコミュニティレジリエンス、工学的利用のための地動(GM)、地震応答制御、システム/被害識別の逆問題など、さまざまな研究分野にわたるDLの適用を探求することによって、詳細な研究状況が明らかにされる。
各研究トピックに適したDL技術が特定され、視覚ベースのタスクにおけるCNNの優位性、シーケンシャルデータにおけるRNN、コミュニティレジリエンスのためのRL、GM分析のための教師なし学習が強調される。
地震工学研究・実践におけるDL活用の機会と課題についても論じる。
関連論文リスト
- Adversarial Challenges in Network Intrusion Detection Systems: Research Insights and Future Prospects [0.33554367023486936]
本稿では,機械学習を用いたネットワーク侵入検知システム(NIDS)の総合的なレビューを行う。
NIDSにおける既存の研究を批判的に検討し、重要なトレンド、強み、限界を強調した。
我々は、この分野における新たな課題について議論し、より堅牢でレジリエントなNIDSの開発に向けた洞察を提供する。
論文 参考訳(メタデータ) (2024-09-27T13:27:29Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
可塑性の喪失は複数の独立したメカニズムに分解できることを示す。
種々の非定常学習タスクにおいて, 層正規化と重み劣化の組み合わせは, 可塑性維持に極めて有効であることを示す。
論文 参考訳(メタデータ) (2024-02-29T00:02:33Z) - Stepping out of Flatland: Discovering Behavior Patterns as Topological Structures in Cyber Hypergraphs [0.7835894511242797]
本稿では,ハイパーグラフとトポロジ理論に基づく新しいフレームワークを提案する。
大規模なサイバーネットワークデータセットで具体例を示す。
論文 参考訳(メタデータ) (2023-11-08T00:00:33Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
我々は、プレサスタ衛星画像とポストサスタ衛星画像とをラベル付けしたデータセットを使用して、建物ごとの損傷を評価する。
複数の畳み込みニューラルネットワーク(CNN)をトレーニングし、建物ごとの損傷を評価する。
我々の研究は、人為的気候変動による人道的危機の進行に、計算的に貢献することを目指している。
論文 参考訳(メタデータ) (2022-01-24T16:55:56Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
ディープラーニングモデルは、誤った分類決定を行うためにモデルを誤解させる可能性のあるデータインスタンスに対して脆弱であることがわかった。
本調査では,ネットワーク侵入検出分野における敵機械学習のさまざまな側面を利用した研究について検討する。
論文 参考訳(メタデータ) (2021-12-06T19:10:23Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
ネットワークトラフィックデータセットであるNSL-KDDについて、パターンを可視化し、異なる学習モデルを用いてサイバー攻撃を検出することで包括的な研究を行う。
侵入検知に単一学習モデルアプローチを用いた従来の浅層学習モデルや深層学習モデルとは異なり、階層戦略を採用する。
バイナリ侵入検出タスクにおける教師なし表現学習モデルの利点を実証する。
論文 参考訳(メタデータ) (2021-08-18T21:19:26Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。