Response Matching for generating materials and molecules
- URL: http://arxiv.org/abs/2405.09057v1
- Date: Wed, 15 May 2024 03:08:21 GMT
- Title: Response Matching for generating materials and molecules
- Authors: Bingqing Cheng,
- Abstract summary: We present a novel generative method called Response Matching (RM)
RM exploits the locality of atomic interactions, and inherently respects permutation, translation, rotation, and periodic invariances.
We demonstrate the efficiency and generalization of RM across three systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has recently emerged as a powerful tool for generating new molecular and material structures. The success of state-of-the-art models stems from their ability to incorporate physical symmetries, such as translation, rotation, and periodicity. Here, we present a novel generative method called Response Matching (RM), which leverages the fact that each stable material or molecule exists at the minimum of its potential energy surface. Consequently, any perturbation induces a response in energy and stress, driving the structure back to equilibrium. Matching to such response is closely related to score matching in diffusion models. By employing the combination of a machine learning interatomic potential and random structure search as the denoising model, RM exploits the locality of atomic interactions, and inherently respects permutation, translation, rotation, and periodic invariances. RM is the first model to handle both molecules and bulk materials under the same framework. We demonstrate the efficiency and generalization of RM across three systems: a small organic molecular dataset, stable crystals from the Materials Project, and one-shot learning on a single diamond configuration.
Related papers
- UniIF: Unified Molecule Inverse Folding [67.60267592514381]
We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
arXiv Detail & Related papers (2024-05-29T10:26:16Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Heterogeneous reconstruction of deformable atomic models in Cryo-EM [30.864688165021054]
We describe a heterogeneous reconstruction method based on an atomistic representation whose deformation is reduced to a handful of collective motions.
We show for each distribution that our approach is able to recapitulate the intermediate atomic models with atomic-level accuracy.
arXiv Detail & Related papers (2022-09-29T22:35:35Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
We propose a novel methodology for transferring knowledge obtained from simple molecular systems to a more complex one.
We focus on the classification of high and low free-energy states.
Our results show a remarkable AUC of 0.92 for transfer learning from tri-alanine to the deca-alanine system.
arXiv Detail & Related papers (2022-05-06T16:21:00Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
We propose a dual-branched neural network for molecular property prediction based on message-passing framework.
Our model learns heterogeneous molecular features with different scales, which are trained flexibly according to each prediction target.
arXiv Detail & Related papers (2021-06-14T10:00:39Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - MLSolv-A: A Novel Machine Learning-Based Prediction of Solvation Free
Energies from Pairwise Atomistic Interactions [0.0]
We introduce a novel ML-based solvation model, which calculates the solvation energy from pairwise atomistic interactions.
Results on 6,493 experimental measurements achieve outstanding performance and transferability for enlarging training data.
arXiv Detail & Related papers (2020-05-13T06:53:54Z) - Representations of molecules and materials for interpolation of
quantum-mechanical simulations via machine learning [0.0]
Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science.
In settings involving many simulations, machine learning can reduce these costs, often by orders of magnitude, by interpolating between reference simulations.
We comprehensively review and discuss current representations and relations between them, using a unified mathematical framework.
arXiv Detail & Related papers (2020-03-26T18:01:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.