論文の概要: Task-adaptive Q-Face
- arxiv url: http://arxiv.org/abs/2405.09059v1
- Date: Wed, 15 May 2024 03:13:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 14:26:01.428873
- Title: Task-adaptive Q-Face
- Title(参考訳): Task-Adaptive Q-Face
- Authors: Haomiao Sun, Mingjie He, Shiguang Shan, Hu Han, Xilin Chen,
- Abstract要約: 本稿では,タスク適応型マルチタスク顔分析手法Q-Faceを提案する。
Q-Faceは統合されたモデルで複数の顔分析タスクを同時に実行する。
本手法は,顔表情認識,行動単位検出,顔属性分析,年齢推定,顔ポーズ推定における最先端性能を実現する。
- 参考スコア(独自算出の注目度): 75.15668556061772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although face analysis has achieved remarkable improvements in the past few years, designing a multi-task face analysis model is still challenging. Most face analysis tasks are studied as separate problems and do not benefit from the synergy among related tasks. In this work, we propose a novel task-adaptive multi-task face analysis method named as Q-Face, which simultaneously performs multiple face analysis tasks with a unified model. We fuse the features from multiple layers of a large-scale pre-trained model so that the whole model can use both local and global facial information to support multiple tasks. Furthermore, we design a task-adaptive module that performs cross-attention between a set of query vectors and the fused multi-stage features and finally adaptively extracts desired features for each face analysis task. Extensive experiments show that our method can perform multiple tasks simultaneously and achieves state-of-the-art performance on face expression recognition, action unit detection, face attribute analysis, age estimation, and face pose estimation. Compared to conventional methods, our method opens up new possibilities for multi-task face analysis and shows the potential for both accuracy and efficiency.
- Abstract(参考訳): 顔分析はここ数年で目覚ましい改善を遂げてきたが、マルチタスクの顔分析モデルを設計することは依然として困難である。
ほとんどの顔分析タスクは別の問題として研究されており、関連するタスク間の相乗効果の恩恵を受けない。
本研究では,タスク適応型多タスク顔分析手法Q-Faceを提案する。
大規模事前学習モデルの複数の層から特徴を融合させ,局所的およびグローバルな顔情報を用いて複数のタスクをサポートする。
さらに,一組の問合せベクトルと融合した多段階特徴とのクロスアテンションを行うタスク適応モジュールを設計し,最終的に各顔分析タスクに対して望ましい特徴を適応的に抽出する。
実験の結果,顔の表情認識,行動単位検出,顔属性分析,年齢推定,顔ポーズ推定において,複数のタスクを同時に実行し,最先端のパフォーマンスを実現することができた。
従来の手法と比較して,マルチタスク顔分析の新しい可能性を開き,精度と効率の両面での可能性を示す。
関連論文リスト
- FaceXFormer: A Unified Transformer for Facial Analysis [59.94066615853198]
FaceXformerは、さまざまな顔分析タスクのためのエンドツーエンドの統一トランスフォーマーモデルである。
本モデルでは,8つのタスクにまたがる頑健さと一般化性を実証し,画像の「夢中」を効果的に処理する。
論文 参考訳(メタデータ) (2024-03-19T17:58:04Z) - Faceptor: A Generalist Model for Face Perception [52.8066001012464]
Faceptorは、よく設計されたシングルエンコーダのデュアルデコーダアーキテクチャを採用するために提案されている。
Faceptorへのレイヤアテンションにより、モデルが最適なレイヤから機能を適応的に選択して、望ましいタスクを実行することができる。
我々のトレーニングフレームワークは補助的な教師付き学習にも適用でき、年齢推定や表現認識といったデータスパースタスクの性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-03-14T15:42:31Z) - SwinFace: A Multi-task Transformer for Face Recognition, Expression
Recognition, Age Estimation and Attribute Estimation [60.94239810407917]
本論文では,単一スウィントランスを用いた顔認識,表情認識,年齢推定,顔属性推定のための多目的アルゴリズムを提案する。
複数のタスク間の競合に対処するため、マルチレベルチャネル注意(MLCA)モジュールをタスク固有の分析に統合する。
実験の結果,提案したモデルでは顔の理解が良く,全てのタスクにおいて優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-08-22T15:38:39Z) - Simultaneous face detection and 360 degree headpose estimation [0.0]
顔検出モデルから抽出した特徴を利用するマルチタスクネットモデルを提案する。
マルチタスク学習手法を用いることで、マルチタスクネットモデルは人間の頭の位置と方向を同時に予測できる。
論文 参考訳(メタデータ) (2021-11-23T01:56:10Z) - Towards a Real-Time Facial Analysis System [13.649384403827359]
本稿では,リアルタイム顔分析システムのシステムレベル設計について述べる。
オブジェクトの検出、分類、回帰のためのディープニューラルネットワークのコレクションにより、カメラビューに現れる各人物の年齢、性別、表情、顔の類似性を認識する。
一般的なオフ・ザ・シェルフアーキテクチャの結果、システムの精度は最先端の手法に匹敵し、認識速度はリアルタイムの要求を満たすことが示された。
論文 参考訳(メタデータ) (2021-09-21T18:27:15Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
マルチタスク学習は、共有学習アルゴリズムによって複数のタスクを共同で学習する方法論として登場した。
我々は異種mtlに対処し,検出,分類,回帰問題を同時に解決する。
大規模な顔分析のための最初のフレームワークであるFaceBehaviorNetを構築し、すべての顔行動タスクを共同で学習する。
論文 参考訳(メタデータ) (2021-05-08T22:26:52Z) - MAFER: a Multi-resolution Approach to Facial Expression Recognition [9.878384185493623]
そこで本稿では,表情認識に携わる深層学習モデルを訓練するための2段階学習手法であるMAFERを提案する。
MAFERの関連する特徴は、タスクに依存しない、すなわち、他の客観的関連技術に補完的に使用できることである。
論文 参考訳(メタデータ) (2021-05-06T07:26:58Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。