Enhancing Airline Customer Satisfaction: A Machine Learning and Causal Analysis Approach
- URL: http://arxiv.org/abs/2405.09076v1
- Date: Wed, 15 May 2024 04:01:47 GMT
- Title: Enhancing Airline Customer Satisfaction: A Machine Learning and Causal Analysis Approach
- Authors: Tejas Mirthipati,
- Abstract summary: This study explores the enhancement of customer satisfaction in the airline industry.
We examine the specific impact of service improvements on customer satisfaction.
We demonstrate that improvements in the digital aspects of customer service significantly elevate overall customer satisfaction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores the enhancement of customer satisfaction in the airline industry, a critical factor for retaining customers and building brand reputation, which are vital for revenue growth. Utilizing a combination of machine learning and causal inference methods, we examine the specific impact of service improvements on customer satisfaction, with a focus on the online boarding pass experience. Through detailed data analysis involving several predictive and causal models, we demonstrate that improvements in the digital aspects of customer service significantly elevate overall customer satisfaction. This paper highlights how airlines can strategically leverage these insights to make data-driven decisions that enhance customer experiences and, consequently, their market competitiveness.
Related papers
- Digital assistant in a point of sales [0.0]
This article investigates the deployment of a Voice User Interface (VUI)-powered digital assistant in a retail setting.
By integrating a digital assistant into a high-traffic retail environment, we evaluate its effectiveness in improving the quality of customer service.
arXiv Detail & Related papers (2024-06-07T11:33:21Z) - Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
We propose a novel client selection strategy designed to emulate the performance achieved with full client participation.
In a single round, we select clients by minimizing the gradient-space estimation error between the client subset and the full client set.
In multi-round selection, we introduce a novel individual fairness constraint, which ensures that clients with similar data distributions have similar frequencies of being selected.
arXiv Detail & Related papers (2024-05-22T12:27:24Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Causal Analysis of Customer Churn Using Deep Learning [9.84528076130809]
Customer churn describes terminating a relationship with a business or reducing customer engagement over a specific period.
This paper proposes a framework using a deep feedforward neural network for classification.
We also propose a causal Bayesian network to predict cause probabilities that lead to customer churn.
arXiv Detail & Related papers (2023-04-20T18:56:13Z) - Customer Churn Prediction Model using Explainable Machine Learning [0.0]
Key objective of the paper is to develop a unique Customer churn prediction model which can help to predict potential customers who are most likely to churn.
We evaluated and analyzed the performance of various tree-based machine learning approaches and algorithms.
In order to improve Model explainability and transparency, paper proposed a novel approach to calculate Shapley values for possible combination of features.
arXiv Detail & Related papers (2023-03-02T04:45:57Z) - FilFL: Client Filtering for Optimized Client Participation in Federated Learning [71.46173076298957]
Federated learning enables clients to collaboratively train a model without exchanging local data.
Clients participating in the training process significantly impact the convergence rate, learning efficiency, and model generalization.
We propose a novel approach, client filtering, to improve model generalization and optimize client participation and training.
arXiv Detail & Related papers (2023-02-13T18:55:31Z) - Customer Profiling, Segmentation, and Sales Prediction using AI in
Direct Marketing [0.0]
This paper proposes a data mining preprocessing method for developing a customer profiling system to improve sales performance.
The main result of this study is the creation of a customer profile and forecast for the sale of goods.
arXiv Detail & Related papers (2023-02-03T14:45:09Z) - 5-Star Hotel Customer Satisfaction Analysis Using Hybrid Methodology [0.0]
Our research suggests a new way to find factors for customer satisfaction through review data.
Unlike many studies on customer satisfaction that have been conducted in the past, our research has a novelty of the thesis.
arXiv Detail & Related papers (2022-09-26T04:53:10Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
This work reports a method to learn the shopping preferences of frequent shoppers to an online gift store by combining ideas from retail analytics and statistical learning with sparsity.
arXiv Detail & Related papers (2021-11-11T05:36:39Z) - Face to Purchase: Predicting Consumer Choices with Structured Facial and
Behavioral Traits Embedding [53.02059906193556]
We propose to predict consumers' purchases based on their facial features and purchasing histories.
We design a semi-supervised model based on a hierarchical embedding network to extract high-level features of consumers.
Our experimental results on a real-world dataset demonstrate the positive effect of incorporating facial information in predicting consumers' purchasing behaviors.
arXiv Detail & Related papers (2020-07-14T06:06:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.