AI-Driven Sentiment Analytics: Unlocking Business Value in the E-Commerce Landscape_v1
- URL: http://arxiv.org/abs/2504.08738v2
- Date: Wed, 16 Apr 2025 05:59:02 GMT
- Title: AI-Driven Sentiment Analytics: Unlocking Business Value in the E-Commerce Landscape_v1
- Authors: Qianye Wu, Chengxuan Xia, Sixuan Tian,
- Abstract summary: This paper presents an AI-driven sentiment analysis system designed specifically for e-commerce applications.<n>Our approach integrates traditional machine learning techniques with modern deep learning models, allowing for a more nuanced understanding of customer sentiment.<n> Experimental results show that our system outperforms standard sentiment analysis methods, achieving an accuracy of 89.7% on diverse, large-scale datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid growth of e-commerce has led to an overwhelming volume of customer feedback, from product reviews to service interactions. Extracting meaningful insights from this data is crucial for businesses aiming to improve customer satisfaction and optimize decision-making. This paper presents an AI-driven sentiment analysis system designed specifically for e-commerce applications, balancing accuracy with interpretability. Our approach integrates traditional machine learning techniques with modern deep learning models, allowing for a more nuanced understanding of customer sentiment while ensuring transparency in decision-making. Experimental results show that our system outperforms standard sentiment analysis methods, achieving an accuracy of 89.7% on diverse, large-scale datasets. Beyond technical performance, real-world implementation across multiple e-commerce platforms demonstrates tangible improvements in customer engagement and operational efficiency. This study highlights both the potential and the challenges of applying AI to sentiment analysis in a commercial setting, offering insights into practical deployment strategies and areas for future refinement.
Related papers
- Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.<n>We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Business Analysis: User Attitude Evaluation and Prediction Based on Hotel User Reviews and Text Mining [12.436840459351393]
This study utilizes advanced natural language processing (NLP) and the BERT model to analyze user reviews.<n>The BERT model accurately classifies emotions, uncovering patterns of satisfaction and dissatisfaction.
arXiv Detail & Related papers (2024-12-21T19:40:36Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Enhancing Airline Customer Satisfaction: A Machine Learning and Causal Analysis Approach [0.0]
This study explores the enhancement of customer satisfaction in the airline industry.
We examine the specific impact of service improvements on customer satisfaction.
We demonstrate that improvements in the digital aspects of customer service significantly elevate overall customer satisfaction.
arXiv Detail & Related papers (2024-05-15T04:01:47Z) - Revolutionizing Retail Analytics: Advancing Inventory and Customer Insight with AI [0.0]
This paper introduces an innovative approach utilizing cutting-edge machine learning technologies.
We aim to create an advanced smart retail analytics system (SRAS), leveraging these technologies to enhance retail efficiency and customer engagement.
arXiv Detail & Related papers (2024-02-24T11:03:01Z) - From Data to Decisions: The Transformational Power of Machine Learning in Business Recommendations [0.9318554903079093]
This research aims to explore the impact of Machine Learning (ML) on the evolution and efficacy of Recommendation Systems (RS)<n>The research identifies the increasing expectation of users for a seamless, intuitive online experience, where content is personalized and dynamically adapted to changing preferences.
arXiv Detail & Related papers (2024-02-12T22:56:18Z) - An explainable machine learning-based approach for analyzing customers'
online data to identify the importance of product attributes [0.6437284704257459]
We propose a game theory machine learning (ML) method that extracts comprehensive design implications for product development.
We apply our method to a real-world dataset of laptops from Kaggle, and derive design implications based on the results.
arXiv Detail & Related papers (2024-02-03T20:50:48Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
We propose a framework relying solely on chat-based customer support interactions for predicting the recommendation decision of individual users.
For our case study, we analyzed a total number of 16.4k users and 48.7k customer support conversations within the financial vertical of a large e-commerce company in Latin America.
Our results show that, with respective feature interpretability, it is possible to predict the likelihood of a user to recommend a product or service, based solely on the message-wise sentiment evolution of their CS conversations in a fully automated way.
arXiv Detail & Related papers (2022-11-08T00:43:36Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.