BonnBot-I Plus: A Bio-diversity Aware Precise Weed Management Robotic Platform
- URL: http://arxiv.org/abs/2405.09118v2
- Date: Thu, 4 Jul 2024 20:49:51 GMT
- Title: BonnBot-I Plus: A Bio-diversity Aware Precise Weed Management Robotic Platform
- Authors: Alireza Ahmadi, Michael Halstead, Claus Smitt, Chris McCool,
- Abstract summary: This article presents the recent advancements in weed management algorithms and the real-world performance of bbot at the University of Bonn's Klein-Altendorf campus.
We present a novel Rolling-view observation model for the BonnBot-Is weed monitoring section which leads to an average absolute weeding performance enhancement of $3.4%$.
For the first time, we show how precision weeding robots could consider bio-diversity-aware concerns in challenging weeding scenarios.
- Score: 2.3961612657966946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we focus on the critical tasks of plant protection in arable farms, addressing a modern challenge in agriculture: integrating ecological considerations into the operational strategy of precision weeding robots like \bbot. This article presents the recent advancements in weed management algorithms and the real-world performance of \bbot\ at the University of Bonn's Klein-Altendorf campus. We present a novel Rolling-view observation model for the BonnBot-Is weed monitoring section which leads to an average absolute weeding performance enhancement of $3.4\%$. Furthermore, for the first time, we show how precision weeding robots could consider bio-diversity-aware concerns in challenging weeding scenarios. We carried out comprehensive weeding experiments in sugar-beet fields, covering both weed-only and mixed crop-weed situations, and introduced a new dataset compatible with precision weeding. Our real-field experiments revealed that our weeding approach is capable of handling diverse weed distributions, with a minimal loss of only $11.66\%$ attributable to intervention planning and $14.7\%$ to vision system limitations highlighting required improvements of the vision system.
Related papers
- Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery [68.69685477556682]
Current monitoring methods involve measuring trees by hand for each species, requiring extensive cost, time, and labour.
Advances in drone remote sensing and computer vision offer great potential for mapping and characterizing trees from aerial imagery.
We compare SAM methods for the task of automatic tree crown instance segmentation in high resolution drone imagery of young tree plantations.
We find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts, but that there is potential for methods which tune SAM further.
arXiv Detail & Related papers (2025-03-26T03:45:36Z) - EcoWeedNet: A Lightweight and Automated Weed Detection Method for Sustainable Next-Generation Agricultural Consumer Electronics [8.630643165308092]
weeds share essential resources with the crops, such as water, soil nutrients, and sunlight, which notably affect crop yields.
The adoption of automated computer vision technologies and ground agricultural consumer electronic vehicles in precision agriculture offers sustainable, low-carbon solutions.
This work proposes EcoWeedNet, a novel model with enhanced weed detection performance without adding significant computational complexity.
arXiv Detail & Related papers (2025-01-31T22:46:20Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - Semi-Supervised Weed Detection for Rapid Deployment and Enhanced Efficiency [2.8444649426160304]
This paper introduces a novel method for semi-supervised weed detection, comprising two main components.
Firstly, a multi-scale feature representation technique is employed to capture distinctive weed features across different scales.
Secondly, we propose an adaptive pseudo-label assignment strategy, leveraging a small set of labelled images during training.
arXiv Detail & Related papers (2024-05-12T23:34:06Z) - WeedScout: Real-Time Autonomous blackgrass Classification and Mapping using dedicated hardware [1.1859244973229535]
The WeedScout project introduces a Real-Rime Autonomous Black-Grass Classification and Mapping (RT-ABGCM)
The system processes live image feeds, infers blackgrass density, and covers two stages of maturation.
By optimising inference speed and model performance, the project advances the integration of AI into agricultural practices.
arXiv Detail & Related papers (2024-05-12T18:04:41Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
arXiv Detail & Related papers (2023-12-22T14:06:44Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Deep-CNN based Robotic Multi-Class Under-Canopy Weed Control in
Precision Farming [2.6085535710135654]
Real-time multi-class weed identification enables species-specific treatment of weeds and significantly reduces the amount of herbicide use.
Here, we present a baseline for classification performance using five benchmark CNN models.
We deploy MobileNetV2 onto our own compact autonomous robot textitSAMBot for real-time weed detection.
arXiv Detail & Related papers (2021-12-28T03:51:55Z) - Deep Semantic Segmentation at the Edge for Autonomous Navigation in
Vineyard Rows [0.0]
Precision agriculture aims at introducing affordable and effective automation into agricultural processes.
Our novel proposed control leverages the latest advancement in machine perception and edge AI techniques to achieve highly affordable and reliable navigation inside vineyard rows.
The segmentation maps generated by the control algorithm itself could be directly exploited as filters for a vegetative assessment of the crop status.
arXiv Detail & Related papers (2021-07-01T18:51:58Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.