論文の概要: Scalable Image Coding for Humans and Machines Using Feature Fusion Network
- arxiv url: http://arxiv.org/abs/2405.09152v2
- Date: Sat, 18 May 2024 02:40:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 20:06:02.605651
- Title: Scalable Image Coding for Humans and Machines Using Feature Fusion Network
- Title(参考訳): 特徴融合ネットワークを用いた人・機械用スケーラブル画像符号化
- Authors: Takahiro Shindo, Taiju Watanabe, Yui Tatsumi, Hiroshi Watanabe,
- Abstract要約: 本稿では,多数の画像認識モデルと互換性のある人や機械を対象とした,学習に基づくスケーラブルな画像符号化手法を提案する。
提案手法では,パラメータ数を削減しつつ,画像圧縮モデルを効率よく組み合わせることを確認する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As image recognition models become more prevalent, scalable coding methods for machines and humans gain more importance. Applications of image recognition models include traffic monitoring and farm management. In these use cases, the scalable coding method proves effective because the tasks require occasional image checking by humans. Existing image compression methods for humans and machines meet these requirements to some extent. However, these compression methods are effective solely for specific image recognition models. We propose a learning-based scalable image coding method for humans and machines that is compatible with numerous image recognition models. We combine an image compression model for machines with a compression model, providing additional information to facilitate image decoding for humans. The features in these compression models are fused using a feature fusion network to achieve efficient image compression. Our method's additional information compression model is adjusted to reduce the number of parameters by enabling combinations of features of different sizes in the feature fusion network. Our approach confirms that the feature fusion network efficiently combines image compression models while reducing the number of parameters. Furthermore, we demonstrate the effectiveness of the proposed scalable coding method by evaluating the image compression performance in terms of decoded image quality and bitrate.
- Abstract(参考訳): 画像認識モデルがより普及するにつれて、機械や人間のスケーラブルなコーディング方法がより重要になる。
画像認識モデルの応用例としては、交通監視と農業管理がある。
これらのユースケースでは、スケーラブルな符号化手法が有効であることが証明される。
人間や機械の既存の画像圧縮手法は、これらの要件をある程度満たしている。
しかし,これらの圧縮法は特定の画像認識モデルにのみ有効である。
本稿では,多数の画像認識モデルと互換性のある人や機械を対象とした,学習に基づくスケーラブルな画像符号化手法を提案する。
我々は,機械用画像圧縮モデルと圧縮モデルを組み合わせて,人間の画像復号を容易にするための追加情報を提供する。
これらの圧縮モデルの特徴は、効率的な画像圧縮を実現するために、特徴融合ネットワークを用いて融合される。
本手法では,特徴融合ネットワークにおいて,異なるサイズの特徴の組み合わせを可能とし,パラメータ数を削減するために,付加的な情報圧縮モデルを調整する。
提案手法では,パラメータ数を削減しつつ,画像圧縮モデルを効率よく組み合わせることを確認する。
さらに、デコードされた画像の品質とビットレートの観点から画像圧縮性能を評価することにより、提案手法の有効性を実証する。
関連論文リスト
- Toward Scalable Image Feature Compression: A Content-Adaptive and Diffusion-Based Approach [44.03561901593423]
本稿では,スケーラブルな画像圧縮のためのコンテンツ適応拡散モデルを提案する。
提案手法は拡散過程を通じて微細なテクスチャを符号化し,知覚品質を向上する。
画像再構成および下流マシンビジョンタスクにおいて,提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2024-10-08T15:48:34Z) - Refining Coded Image in Human Vision Layer Using CNN-Based Post-Processing [0.0]
本稿では,ポストプロセッシングをスケーラブルな符号化方式に統合することにより,人間のデコード画像の品質を向上させる手法を提案する。
実験結果から, 後処理により圧縮性能が向上することが示された。
提案手法の有効性を従来の手法との比較により検証した。
論文 参考訳(メタデータ) (2024-05-20T09:19:01Z) - A Training-Free Defense Framework for Robust Learned Image Compression [48.41990144764295]
本研究では,学習した画像圧縮モデルの敵攻撃に対する堅牢性について検討する。
簡単な画像変換関数をベースとした無訓練防御手法を提案する。
論文 参考訳(メタデータ) (2024-01-22T12:50:21Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Universal Deep Image Compression via Content-Adaptive Optimization with
Adapters [43.291753358414255]
ディープイメージ圧縮は、自然画像上のJPEGのような従来のコーデックよりも優れている。
深部画像圧縮は学習ベースであり、領域外画像に対して圧縮性能が著しく低下する問題に直面する。
本研究の目的は,自然画像や線画,漫画などの任意の領域に属する画像を圧縮することである。
論文 参考訳(メタデータ) (2022-11-02T07:01:30Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
本稿では,最近の画像圧縮モデルの速度歪みトレードオフをさらに改善する検索自由化フレームワークについて述べる。
提案手法により,Bjontegaard-Deltaレート(BD-rate)を最大10%向上させることができる。
論文 参考訳(メタデータ) (2022-04-26T01:35:02Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
空間特徴変換(SFT arXiv:1804.02815)に基づく多目的深部画像圧縮ネットワークを提案する。
本モデルは,任意の画素単位の品質マップによって制御される単一モデルを用いて,幅広い圧縮速度をカバーしている。
提案するフレームワークにより,様々なタスクに対してタスク対応の画像圧縮を行うことができる。
論文 参考訳(メタデータ) (2021-08-21T17:30:06Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
我々はJPEGファイル量子化行列を用いたアーティファクト修正のための新しいアーキテクチャを開発した。
これにより、特定の品質設定のためにトレーニングされたモデルに対して、単一のモデルで最先端のパフォーマンスを達成できます。
論文 参考訳(メタデータ) (2020-04-17T00:10:08Z) - Discernible Image Compression [124.08063151879173]
本稿では、外観と知覚の整合性の両方を追求し、圧縮画像を作成することを目的とする。
エンコーダ・デコーダ・フレームワークに基づいて,事前学習したCNNを用いて,オリジナル画像と圧縮画像の特徴を抽出する。
ベンチマーク実験により,提案手法を用いて圧縮した画像は,その後の視覚認識・検出モデルでもよく認識できることが示された。
論文 参考訳(メタデータ) (2020-02-17T07:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。