A first look into Utiq: Next-generation cookies at the ISP level
- URL: http://arxiv.org/abs/2405.09205v1
- Date: Wed, 15 May 2024 09:23:59 GMT
- Title: A first look into Utiq: Next-generation cookies at the ISP level
- Authors: Ismael Castell-Uroz, Pere Barlet-Ros,
- Abstract summary: Third-party cookies have been widely used for years, they have also been criticized for their potential impact on user privacy.
Many browsers allow users to block third-party cookies, which limits their usefulness for advertisers.
We take a first look at Utiq, a new way of user tracking performed directly by the ISP, to substitute the third-party cookies.
- Score: 3.434440572295625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online privacy has become increasingly important in recent years. While third-party cookies have been widely used for years, they have also been criticized for their potential impact on user privacy. They can be used by advertisers to track users across multiple sites, allowing them to build detailed profiles of their behavior and interests. However, nowadays, many browsers allow users to block third-party cookies, which limits their usefulness for advertisers. In this paper, we take a first look at Utiq, a new way of user tracking performed directly by the ISP, to substitute the third-party cookies used until now. We study the main properties of this new identification methodology and their adoption on the 10K most popular websites. Our results show that, although still marginal due to the restrictions imposed by the system, between 0.7% and 1.2% of websites already include Utiq as one of their user identification methods.
Related papers
- Browsing without Third-Party Cookies: What Do You See? [5.181502547611254]
Third-party web cookies are often used for privacy-invasive behavior tracking.
To understand the effects of such third-party cookieless browsing, we crawled and measured the top 10,000 Tranco websites.
We develop a framework to remove third-party cookies and analyze the differences between the appearance of web pages with and without these cookies.
arXiv Detail & Related papers (2024-10-14T17:47:43Z) - How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
Browser fingerprinting can be used to identify and track users across the Web, even without cookies.
This technique and resulting privacy risks have been studied for over a decade.
We provide a first-of-its-kind dataset to enable further research.
arXiv Detail & Related papers (2024-10-09T14:51:58Z) - To Be or Not to Be (in the EU): Measurement of Discrepancies Presented in Cookie Paywalls [0.0]
This study explores the effects of three factors: 1) the clients' browser, 2) the device type (desktop or mobile), and 3) the geographic location on the presence and behavior of cookie paywalls.
Using an automatic crawler on our dataset composed of 804 websites that present a cookie paywall, we observed that the presence of a cookie paywall was most affected by the geographic location of the user.
arXiv Detail & Related papers (2024-10-09T14:18:12Z) - Characterizing Browser Fingerprinting and its Mitigations [0.0]
This work explores one of these tracking techniques: browser fingerprinting.
We detail how browser fingerprinting works, how prevalent it is, and what defenses can mitigate it.
arXiv Detail & Related papers (2023-10-12T20:31:24Z) - A Quantitative Information Flow Analysis of the Topics API [0.34952465649465553]
We analyze the re-identification risk for individual Internet users introduced by the Topics API from the perspective of information- and decision-theoretic framework.
Our model allows a theoretical analysis of both privacy and utility aspects of the API and their trade-off, and we show that the Topics API does have better privacy than third-party cookies.
arXiv Detail & Related papers (2023-09-26T08:14:37Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
We design an intelligent approach to online privacy protection that leverages supervised learning.
By detecting and blocking data collection that might infringe on a user's privacy, we can restore a degree of digital privacy to the user.
arXiv Detail & Related papers (2023-04-06T05:20:16Z) - Analysis of Longitudinal Changes in Privacy Behavior of Android
Applications [79.71330613821037]
In this paper, we examine the trends in how Android apps have changed over time with respect to privacy.
We examine the adoption of HTTPS, whether apps scan the device for other installed apps, the use of permissions for privacy-sensitive data, and the use of unique identifiers.
We find that privacy-related behavior has improved with time as apps continue to receive updates, and that the third-party libraries used by apps are responsible for more issues with privacy.
arXiv Detail & Related papers (2021-12-28T16:21:31Z) - User Tracking in the Post-cookie Era: How Websites Bypass GDPR Consent
to Track Users [3.936965297430477]
We investigate whether websites use persistent and sophisticated forms of tracking in order to track users who said they do not want cookies.
Our results suggest that websites do use such modern forms of tracking even before users had the opportunity to register their choice with respect to cookies.
As a result, users' choices play very little role with respect to tracking.
arXiv Detail & Related papers (2021-02-17T14:11:10Z) - A Cooperative Memory Network for Personalized Task-oriented Dialogue
Systems with Incomplete User Profiles [55.951126447217526]
We study personalized Task-oriented Dialogue Systems without assuming that user profiles are complete.
We propose a Cooperative Memory Network (CoMemNN) that has a novel mechanism to gradually enrich user profiles.
CoMemNN is able to enrich user profiles effectively, which results in an improvement of 3.06% in terms of response selection accuracy.
arXiv Detail & Related papers (2021-02-16T18:05:54Z) - Federated Learning of User Authentication Models [69.93965074814292]
We propose Federated User Authentication (FedUA), a framework for privacy-preserving training of machine learning models.
FedUA adopts federated learning framework to enable a group of users to jointly train a model without sharing the raw inputs.
We show our method is privacy-preserving, scalable with number of users, and allows new users to be added to training without changing the output layer.
arXiv Detail & Related papers (2020-07-09T08:04:38Z) - Keystroke Biometrics in Response to Fake News Propagation in a Global
Pandemic [77.79066811371978]
This work proposes and analyzes the use of keystroke biometrics for content de-anonymization.
Fake news have become a powerful tool to manipulate public opinion, especially during major events.
arXiv Detail & Related papers (2020-05-15T17:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.