Characterizing Browser Fingerprinting and its Mitigations
- URL: http://arxiv.org/abs/2311.12197v1
- Date: Thu, 12 Oct 2023 20:31:24 GMT
- Title: Characterizing Browser Fingerprinting and its Mitigations
- Authors: Alisha Ukani,
- Abstract summary: This work explores one of these tracking techniques: browser fingerprinting.
We detail how browser fingerprinting works, how prevalent it is, and what defenses can mitigate it.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: People are becoming increasingly concerned with their online privacy, especially with how advertising companies track them across websites (a practice called cross-site tracking), as reconstructing a user's browser history can reveal sensitive information. Recent legislation like the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act have tried to limit the extent to which third parties perform cross-site tracking, and browsers have also made tracking more difficult by deprecating the most-common tracking mechanism: third-party cookies. However, online advertising companies continue to track users through other mechanisms that do not rely on cookies. This work explores one of these tracking techniques: browser fingerprinting. We detail how browser fingerprinting works, how prevalent it is, and what defenses can mitigate it.
Related papers
- PriveShield: Enhancing User Privacy Using Automatic Isolated Profiles in Browsers [3.9251831157293515]
PriveShield is a light-weight privacy mechanism that disrupts the information gathering cycle.
Our evaluation results show that our extension is effective in preventing retargeted ads in 91% of those scenarios.
arXiv Detail & Related papers (2025-01-03T20:29:33Z) - FaceTracer: Unveiling Source Identities from Swapped Face Images and Videos for Fraud Prevention [68.07489215110894]
FaceTracer is a framework specifically designed to trace the identity of the source person from swapped face images or videos.
In experiments, FaceTracer successfully identified the source person in swapped content and enabling the tracing of malicious actors involved in fraudulent activities.
arXiv Detail & Related papers (2024-12-11T04:00:17Z) - Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
Browser fingerprinting is a growing technique for identifying and tracking users online without traditional methods like cookies.
This paper gives an overview by examining the various fingerprinting techniques and analyzes the entropy and uniqueness of the collected data.
arXiv Detail & Related papers (2024-11-18T20:32:31Z) - How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
Browser fingerprinting can be used to identify and track users across the Web, even without cookies.
This technique and resulting privacy risks have been studied for over a decade.
We provide a first-of-its-kind dataset to enable further research.
arXiv Detail & Related papers (2024-10-09T14:51:58Z) - The First Early Evidence of the Use of Browser Fingerprinting for Online Tracking [10.98528003128308]
It is imperative to address the mounting concerns regarding the utilization of browser fingerprinting in the realm of online advertising.
This paper introduces FPTrace, a framework to assess fingerprinting-based user tracking by analyzing ad changes from browser fingerprinting adjustments.
arXiv Detail & Related papers (2024-09-24T01:39:16Z) - Keep your Identity Small: Privacy-preserving Client-side Fingerprinting [0.0]
Device fingerprinting is a widely used technique that allows a third party to identify a particular device.
One of its most widespread uses is to identify users visiting different websites and thus build their browsing history.
This constitutes a specific type of web tracking that poses a threat to users' privacy.
We propose Privacy-preserving Client-side Fingerprinting (PCF), a new method that allows device fingerprinting on the web, while blocks the possibility of performing web tracking.
arXiv Detail & Related papers (2023-09-14T09:45:29Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
Video anomaly detection (VAD) without human monitoring is a complex computer vision task.
Privacy leakage in VAD allows models to pick up and amplify unnecessary biases related to people's personal information.
We propose TeD-SPAD, a privacy-aware video anomaly detection framework that destroys visual private information in a self-supervised manner.
arXiv Detail & Related papers (2023-08-21T22:42:55Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
We design an intelligent approach to online privacy protection that leverages supervised learning.
By detecting and blocking data collection that might infringe on a user's privacy, we can restore a degree of digital privacy to the user.
arXiv Detail & Related papers (2023-04-06T05:20:16Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
Existing approaches for mitigating privacy leakage in action recognition require privacy labels along with the action labels from the video dataset.
Recent developments of self-supervised learning (SSL) have unleashed the untapped potential of the unlabeled data.
We present a novel training framework which removes privacy information from input video in a self-supervised manner without requiring privacy labels.
arXiv Detail & Related papers (2022-03-29T02:56:40Z) - User Tracking in the Post-cookie Era: How Websites Bypass GDPR Consent
to Track Users [3.936965297430477]
We investigate whether websites use persistent and sophisticated forms of tracking in order to track users who said they do not want cookies.
Our results suggest that websites do use such modern forms of tracking even before users had the opportunity to register their choice with respect to cookies.
As a result, users' choices play very little role with respect to tracking.
arXiv Detail & Related papers (2021-02-17T14:11:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.