論文の概要: Dynamic Activation Pitfalls in LLaMA Models: An Empirical Study
- arxiv url: http://arxiv.org/abs/2405.09274v1
- Date: Wed, 15 May 2024 11:42:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 13:36:32.819788
- Title: Dynamic Activation Pitfalls in LLaMA Models: An Empirical Study
- Title(参考訳): LLaMAモデルにおける動的活性化ピットフォール--実証的研究
- Authors: Chi Ma, Mincong Huang, Chao Wang, Yujie Wang, Lei Yu,
- Abstract要約: 言語モデルのLLaMAファミリーにおける動的アクティベーション機構の有効性について検討した。
我々の経験的発見は、現在の動的アクティベーションスキームに固有のいくつかの落とし穴を発見した。
- 参考スコア(独自算出の注目度): 20.404448253054014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we systematically investigate the efficacy of dynamic activation mechanisms within the LLaMA family of language models. Despite the potential of dynamic activation methods to reduce computation and increase speed in models using the ReLU activation function, our empirical findings have uncovered several inherent pitfalls in the current dynamic activation schemes. Through extensive experiments across various dynamic activation strategies, we demonstrate that LLaMA models usually underperform when compared to their ReLU counterparts, particularly in scenarios demanding high sparsity ratio. We attribute these deficiencies to a combination of factors: 1) the inherent complexity of dynamically predicting activation heads and neurons; 2) the inadequate sparsity resulting from activation functions; 3) the insufficient preservation of information resulting from KV cache skipping. Our analysis not only sheds light on the limitations of dynamic activation in the context of large-scale LLaMA models but also proposes roadmaps for enhancing the design of future sparsity schemes.
- Abstract(参考訳): 本研究では,言語モデルのLLaMAファミリーにおける動的アクティベーション機構の有効性を系統的に検討する。
ReLUアクティベーション関数を用いたモデルにおける動的アクティベーション法のポテンシャルと速度の向上にもかかわらず、我々の経験的発見は、現在の動的アクティベーションスキームに固有のいくつかの落とし穴を発見した。
様々な動的アクティベーション戦略の広範な実験を通して、LLaMAモデルが通常、ReLUモデルと比較して性能が劣ることを示した。
これらの欠陥は、以下の要素の組み合わせによるものとみなす。
1) 活性化頭部及びニューロンを動的に予測する固有の複雑さ
2 活性化機能により生じる空白が不十分であること。
3)KVキャッシュスキップによる情報の保存が不十分である。
我々の分析は、大規模LLaMAモデルにおける動的アクティベーションの限界に光を当てるだけでなく、将来の疎性スキームの設計を改善するためのロードマップも提案している。
関連論文リスト
- Sparsing Law: Towards Large Language Models with Greater Activation Sparsity [62.09617609556697]
活性化空間性は、除去できる活性化出力の中に、かなり弱い分散要素が存在することを表す。
PPL-$p%$ sparsity, a accurate and performance-aware activation sparsity metric。
我々は、SiLUよりも活性化関数としてReLUが効率的であることを示し、より多くのトレーニングデータを利用してアクティベーション空間を改善することができることを示した。
論文 参考訳(メタデータ) (2024-11-04T17:59:04Z) - Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
強化学習の現実的な応用は、エージェントが複雑な高次元の観察を行う環境を含むことが多い。
本稿では,統計的・アルゴリズム的な観点から,textit General$ latent dynamicsの下での強化学習の課題に対処する。
論文 参考訳(メタデータ) (2024-10-23T14:22:49Z) - First Activations Matter: Training-Free Methods for Dynamic Activation in Large Language Models [25.15698344467722]
本稿では,シークエンス情報を利用したトレーニングフリーなThresholdベースの動的アクティベーション手法を提案する。
本研究は,歴史関連アクティベーションの不確かさと意味不明アクティベーション慣性という2つの重要な特徴を理論的に分析する。
論文 参考訳(メタデータ) (2024-08-21T07:38:51Z) - MOYU: A Theoretical Study on Massive Over-activation Yielded Uplifts in LLMs [20.404448253054014]
MYU(Massive Over-activation Yielded Uplifts)は、大規模言語モデル固有の特性である。
Massive Over-activation Yielded Uplifts (MOYU) は、これらのモデルにおける推論を加速するために設計された、巧妙だが未探索の戦略である。
論文 参考訳(メタデータ) (2024-06-18T12:57:33Z) - A Method on Searching Better Activation Functions [15.180864683908878]
深層ニューラルネットワークにおける静的活性化関数を設計するためのエントロピーに基づくアクティベーション関数最適化(EAFO)手法を提案する。
我々は、CRRELU(Correction Regularized ReLU)として知られるReLUから新しいアクティベーション関数を導出する。
論文 参考訳(メタデータ) (2024-05-19T03:48:05Z) - ProSparse: Introducing and Enhancing Intrinsic Activation Sparsity within Large Language Models [74.59731375779934]
活性化スパーシリティ(Activation sparsity)とは、活性化出力の間に弱い分散要素が存在することを指す。
本稿では,PLMを高活性化空間にプッシュするために,"ProSparse" という,シンプルで効果的なスペース化手法を提案する。
論文 参考訳(メタデータ) (2024-02-21T03:58:49Z) - ReLU$^2$ Wins: Discovering Efficient Activation Functions for Sparse
LLMs [91.31204876440765]
本稿では、ニューロンの出力の等級と調整された等級しきい値によってニューロンの活性化を定義する一般的な方法を提案する。
スパース計算における最も効率的なアクティベーション関数を見つけるために,本手法を提案する。
我々は、ReLU、SwiGLU、ReGLU、ReLU$2$といった異なるアクティベーション機能を利用したLCMの徹底的な実験を行う。
論文 参考訳(メタデータ) (2024-02-06T08:45:51Z) - ReLU Strikes Back: Exploiting Activation Sparsity in Large Language
Models [35.77063662562747]
数十億のパラメータを持つ大規模言語モデル(LLM)は、AIアプリケーションを大幅に変革した。
推論中に要求される計算は、リソースに制約のあるデバイスに展開する上で大きな課題を提起している。
本稿では,ReLUアクティベーション関数の使用がコンバージェンスや性能に悪影響を及ぼす一方で,計算量や重量移動を著しく削減できることを実証する。
論文 参考訳(メタデータ) (2023-10-06T20:01:33Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。