論文の概要: Deep Blur Multi-Model (DeepBlurMM) -- a strategy to mitigate the impact of image blur on deep learning model performance in histopathology image analysis
- arxiv url: http://arxiv.org/abs/2405.09298v1
- Date: Wed, 15 May 2024 12:40:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 13:36:32.783692
- Title: Deep Blur Multi-Model (DeepBlurMM) -- a strategy to mitigate the impact of image blur on deep learning model performance in histopathology image analysis
- Title(参考訳): Deep Blur Multi-Model (DeepBlurMM) -- 病理画像解析における画像ぼかしの深層学習モデル性能への影響を緩和するための戦略
- Authors: Yujie Xiang, Bojing Liu, Mattias Rantalainen,
- Abstract要約: 本稿では,非シャープ画像領域の影響を緩和し,モデル性能を向上させるために,DeepBlurMMというマルチモデルアプローチを提案する。
DeepBlurMMはシグマカットオフを使用して、さまざまなレベルのぼやけたタイルを予測するのに最適なモデルを決定する。
乳がんNottingham Histological Grade 1 vs 3におけるDeepBlurMMの有用性について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: AI-based analysis of histopathology whole slide images (WSIs) is central in computational pathology. However, image quality can impact model performance. Here, we investigate to what extent unsharp areas of WSIs impact deep convolutional neural network classification performance. We propose a multi-model approach, i.e. DeepBlurMM, to alleviate the impact of unsharp image areas and improve the model performance. DeepBlurMM uses the sigma cut-offs to determine the most suitable model for predicting tiles with various levels of blurring within a single WSI, where sigma is the standard deviation of the Gaussian distribution. Specifically, the cut-offs categorise the tiles into sharp or slight blur, moderate blur, and high blur. Each blur level has a corresponding model to be selected for tile-level predictions. Throughout the simulation study, we demonstrated the application of DeepBlurMM in a binary classification task for breast cancer Nottingham Histological Grade 1 vs 3. Performance, evaluated over 5-fold cross-validation, showed that DeepBlurMM outperformed the base model under moderate blur and mixed blur conditions. Unsharp image tiles (local blurriness) at prediction time reduced model performance. The proposed multi-model approach improved performance under some conditions, with the potential to improve quality in both research and clinical applications.
- Abstract(参考訳): 病理組織像全体(WSI)のAIによる解析は、計算病理学の中心である。
しかし、画質はモデルの性能に影響を及ぼす可能性がある。
本稿では,WSIの非シャープ領域がディープ畳み込みニューラルネットワークの分類性能に与える影響について検討する。
本稿では,非シャープ画像領域の影響を緩和し,モデル性能を向上させるために,DeepBlurMMというマルチモデルアプローチを提案する。
DeepBlurMMは、シグマカットオフを使用して、単一のWSI内で様々なレベルのぼやけたタイルを予測するのに最も適したモデルを決定する。
具体的には、カットオフは、タイルをシャープまたはわずかにぼやけ、ややぼやけ、高いぼやけに分類する。
各ブラーレベルには、タイルレベルの予測のために選択される対応するモデルがある。
乳がんNottingham Histological Grade 1 vs 3におけるDeepBlurMMの有効性について検討した。
5倍のクロスバリデーションで評価した結果,DeepBlurMMは中等度なぼかしと混合したぼかし条件下でのベースモデルよりも優れていた。
予測時のアンシャープ画像タイル(局所的ぼかし)はモデル性能を低下させた。
提案したマルチモデルアプローチは、いくつかの条件下での性能を改善し、研究と臨床の両方における品質を改善する可能性がある。
関連論文リスト
- Local Manifold Learning for No-Reference Image Quality Assessment [68.9577503732292]
No-Reference Image Quality Assessment(NR-IQA)のための、局所多様体学習とコントラスト学習を統合した革新的なフレームワークを提案する。
提案手法は,7つの標準データセットの最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-27T15:14:23Z) - BAGS: Blur Agnostic Gaussian Splatting through Multi-Scale Kernel Modeling [32.493592776662005]
様々な画像のぼかしに対するガウススプティングに基づく手法の頑健さを解析する。
この問題に対処するためにBlur Agnostic Gaussian Splatting (BAGS)を提案する。
BAGSは、画像がぼやけているにもかかわらず、3D一貫性と高品質なシーンを再構築できる2Dモデリング能力を導入している。
論文 参考訳(メタデータ) (2024-03-07T22:21:08Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANRAC(RANdom RAy Consensus)は、一貫性のないデータの影響を排除するための効率的な手法である。
我々はRANSACパラダイムのファジィ適応を定式化し、大規模モデルへの適用を可能にした。
その結果, 新規な視点合成のための最先端のロバストな手法と比較して, 顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-15T13:33:09Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Benchmark Generation Framework with Customizable Distortions for Image
Classifier Robustness [4.339574774938128]
本稿では,画像分類モデルのロバスト性を評価するために,逆ベンチマークを生成する新しいフレームワークを提案する。
当社のフレームワークでは,画像に最適な歪みの種類をカスタマイズすることが可能で,デプロイメントに関連する歪みに対処する上で有効である。
論文 参考訳(メタデータ) (2023-10-28T07:40:42Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - Multiscale Structure Guided Diffusion for Image Deblurring [24.09642909404091]
拡散確率モデル (DPM) は画像の劣化に用いられている。
暗黙のバイアスとして、単純だが効果的なマルチスケール構造ガイダンスを導入する。
目に見えないデータのアーティファクトが少ないほど、より堅牢なデブロアリング結果を示します。
論文 参考訳(メタデータ) (2022-12-04T10:40:35Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
特に、異なるResNet、VGGNetアーキテクチャをバックボーンとして使用するRetinaNetモデルをトレーニングする。
そこで本研究では,異なるモデルからの出力予測を組み合わせることで,欠陥の分類と検出に優れた性能を実現するための選好に基づくアンサンブル戦略を提案する。
論文 参考訳(メタデータ) (2022-06-20T16:34:11Z) - MC-Blur: A Comprehensive Benchmark for Image Deblurring [127.6301230023318]
ほとんどの実世界の画像では、ブラーは動きやデフォーカスなど様々な要因によって引き起こされる。
我々は,MC-Blurと呼ばれる大規模マルチライク画像デブロアリングデータセットを新たに構築する。
MC-Blurデータセットに基づいて,異なるシナリオにおけるSOTA法の比較を行う。
論文 参考訳(メタデータ) (2021-12-01T02:10:42Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
グループベース画像復元法は,パッチ間の類似性収集に有効である。
各パッチに対して、検索ウィンドウ内で最もよく似たパッチを見つけ、グループ化する。
提案手法は, 主観的, 客観的両面において, 最先端の復調法よりも優れている。
論文 参考訳(メタデータ) (2020-08-09T15:12:16Z) - Deblurring by Realistic Blurring [110.54173799114785]
本稿では,BGAN(Learning-to-blurr GAN)とDBGAN(Learning-to-DeBlur GAN)の2つのモデルを組み合わせた新しい手法を提案する。
第1のモデルであるBGANは、未ペアのシャープでぼやけた画像セットでシャープな画像をぼやかす方法を学習し、第2のモデルであるDBGANをガイドして、そのような画像を正しくデブロアする方法を学ぶ。
さらなる貢献として,多様なぼやけた画像を含むRWBIデータセットについても紹介する。
論文 参考訳(メタデータ) (2020-04-04T05:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。