論文の概要: Multi-Source Conformal Inference Under Distribution Shift
- arxiv url: http://arxiv.org/abs/2405.09331v1
- Date: Wed, 15 May 2024 13:33:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 13:26:38.665833
- Title: Multi-Source Conformal Inference Under Distribution Shift
- Title(参考訳): 分散シフト下におけるマルチソースコンフォーマル推論
- Authors: Yi Liu, Alexander W. Levis, Sharon-Lise Normand, Larry Han,
- Abstract要約: 複数のバイアスのあるデータソースを活用することにより,対象個体数の分布自由な予測区間を得るという課題を考察する。
対象集団および源集団における未観測結果の定量値に対する効率的な影響関数を導出する。
本稿では、効率向上のための重み付き情報ソースとバイアス低減のための重み付き非情報ソースに対するデータ適応戦略を提案する。
- 参考スコア(独自算出の注目度): 41.701790856201036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have experienced increasing utilization of complex machine learning models across multiple sources of data to inform more generalizable decision-making. However, distribution shifts across data sources and privacy concerns related to sharing individual-level data, coupled with a lack of uncertainty quantification from machine learning predictions, make it challenging to achieve valid inferences in multi-source environments. In this paper, we consider the problem of obtaining distribution-free prediction intervals for a target population, leveraging multiple potentially biased data sources. We derive the efficient influence functions for the quantiles of unobserved outcomes in the target and source populations, and show that one can incorporate machine learning prediction algorithms in the estimation of nuisance functions while still achieving parametric rates of convergence to nominal coverage probabilities. Moreover, when conditional outcome invariance is violated, we propose a data-adaptive strategy to upweight informative data sources for efficiency gain and downweight non-informative data sources for bias reduction. We highlight the robustness and efficiency of our proposals for a variety of conformal scores and data-generating mechanisms via extensive synthetic experiments. Hospital length of stay prediction intervals for pediatric patients undergoing a high-risk cardiac surgical procedure between 2016-2022 in the U.S. illustrate the utility of our methodology.
- Abstract(参考訳): 近年、複数のデータソースにまたがる複雑な機械学習モデルの利用が増加し、より一般化可能な意思決定が可能になっている。
しかし、データソース間の分散シフトと個々のレベルのデータの共有に関するプライバシー上の懸念、マシンラーニングの予測からの不確実性な定量化が欠如しているため、マルチソース環境で有効な推論を実現するのは難しい。
本稿では,複数の偏りのあるデータソースを利用して,対象個体数の分布自由予測区間を求める問題について考察する。
対象および対象集団における未観測結果の量子化に対する効率的な影響関数を導出し,未知度関数の推定に機械学習予測アルゴリズムを組み込むことが可能であることを示す。
さらに、条件付き結果の不変性に反した場合、効率向上のための重み付き情報ソースと、バイアス低減のための重み付き非情報ソースに対するデータ適応戦略を提案する。
本稿では,多種多様なコンフォメーションスコアとデータ生成機構について,広範囲な合成実験による提案手法の堅牢性と効率性を強調した。
米国における2016-2022年の高リスク心外科手術を施行した小児患者の入院予測間隔の病院長は,本法の有用性を示唆している。
関連論文リスト
- Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Enhancing Performance for Highly Imbalanced Medical Data via Data Regularization in a Federated Learning Setting [6.22153888560487]
本手法の目的は,心血管疾患予測のためのモデル性能を向上させることである。
本手法は, 心臓血管疾患予測のための4つのデータセットにまたがって評価され, 異なるクライアントに分散している。
論文 参考訳(メタデータ) (2024-05-30T19:15:38Z) - Multiply Robust Federated Estimation of Targeted Average Treatment
Effects [0.0]
多地点データを用いて,対象個体群に対する有効な因果推論を導出する手法を提案する。
提案手法では,移動学習を組み込んでアンサンブル重みを推定し,ソースサイトからの情報を組み合わせる。
論文 参考訳(メタデータ) (2023-09-22T03:15:08Z) - Robust Direct Learning for Causal Data Fusion [14.462235940634969]
我々は、他のニュアンス関数から処理効果を分離するマルチソースデータを統合するためのフレームワークを提供する。
また,半パラメトリック効率理論の理論的洞察に基づく因果情報認識重み付け関数を提案する。
論文 参考訳(メタデータ) (2022-11-01T03:33:22Z) - Collaborative causal inference on distributed data [7.293479909193382]
本研究では,データ協調実験(DC-QE)を提案し,対象と共変量の欠如を解消し,推定におけるランダムな誤りやバイアスを低減する。
提案手法では, 個人データから生成した中間表現を局所的データから構築し, プライバシ保存のためにプライベートデータの代わりに中間表現を共有し, 共有中間表現から適合度スコアを推定し, 最終的に, 適合度スコアから治療効果を推定する。
論文 参考訳(メタデータ) (2022-08-16T18:28:56Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - CEDAR: Communication Efficient Distributed Analysis for Regressions [9.50726756006467]
患者レベルのデータを共有することなく、複数のEHRデータベース上での分散学習への関心が高まっている。
本稿では,局所的な最適推定値を集約する通信効率のよい新しい手法を提案する。
本稿では,統計的推測法と差分プライバシーに関する理論的検討を行い,シミュレーションおよび実データ解析におけるその性能評価を行う。
論文 参考訳(メタデータ) (2022-07-01T09:53:44Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。