Content-Based Image Retrieval for Multi-Class Volumetric Radiology Images: A Benchmark Study
- URL: http://arxiv.org/abs/2405.09334v2
- Date: Thu, 4 Jul 2024 09:00:32 GMT
- Title: Content-Based Image Retrieval for Multi-Class Volumetric Radiology Images: A Benchmark Study
- Authors: Farnaz Khun Jush, Steffen Vogler, Tuan Truong, Matthias Lenga,
- Abstract summary: We benchmark embeddings derived from pre-trained supervised models on medical images against embeddings derived from pre-trained unsupervised models on non-medical images.
For volumetric image retrieval, we adopt a late interaction re-ranking method inspired by text matching.
- Score: 0.6249768559720122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While content-based image retrieval (CBIR) has been extensively studied in natural image retrieval, its application to medical images presents ongoing challenges, primarily due to the 3D nature of medical images. Recent studies have shown the potential use of pre-trained vision embeddings for CBIR in the context of radiology image retrieval. However, a benchmark for the retrieval of 3D volumetric medical images is still lacking, hindering the ability to objectively evaluate and compare the efficiency of proposed CBIR approaches in medical imaging. In this study, we extend previous work and establish a benchmark for region-based and localized multi-organ retrieval using the TotalSegmentator dataset (TS) with detailed multi-organ annotations. We benchmark embeddings derived from pre-trained supervised models on medical images against embeddings derived from pre-trained unsupervised models on non-medical images for 29 coarse and 104 detailed anatomical structures in volume and region levels. For volumetric image retrieval, we adopt a late interaction re-ranking method inspired by text matching. We compare it against the original method proposed for volume and region retrieval and achieve a retrieval recall of 1.0 for diverse anatomical regions with a wide size range. The findings and methodologies presented in this paper provide insights and benchmarks for further development and evaluation of CBIR approaches in the context of medical imaging.
Related papers
- VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image.
We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models.
The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction.
arXiv Detail & Related papers (2024-01-02T19:51:49Z) - 3D-MIR: A Benchmark and Empirical Study on 3D Medical Image Retrieval in
Radiology [6.851500027718433]
The field of 3D medical image retrieval is still emerging, lacking established evaluation benchmarks, comprehensive datasets, and thorough studies.
This paper introduces a novel benchmark for 3D Medical Image Retrieval (3D-MIR) that encompasses four different anatomies imaged with computed tomography.
Using this benchmark, we explore a diverse set of search strategies that use aggregated 2D slices, 3D volumes, and multi-modal embeddings from popular multi-modal foundation models as queries.
arXiv Detail & Related papers (2023-11-23T00:57:35Z) - Medical Image Retrieval Using Pretrained Embeddings [0.6827423171182154]
We show that medical image retrieval is feasible using pretrained networks without any additional training or fine-tuning steps.
Using pretrained embeddings, we achieved a recall of 1 for various tasks at modality, body region, and organ level.
arXiv Detail & Related papers (2023-11-22T17:42:33Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Region-based Contrastive Pretraining for Medical Image Retrieval with
Anatomic Query [56.54255735943497]
Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR)
We introduce a novel Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR)
arXiv Detail & Related papers (2023-05-09T16:46:33Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
Photoacoustic imaging has the potential to revolutionise healthcare.
Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information.
We present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images.
arXiv Detail & Related papers (2021-05-20T09:33:55Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - A Bag of Visual Words Model for Medical Image Retrieval [0.9137554315375919]
Bag of Visual Words (BoVW) is a technique that can be used to effectively represent intrinsic image features in vector space.
We present a MedIR approach based on the BoVW model for content-based medical image retrieval.
arXiv Detail & Related papers (2020-07-18T16:21:30Z) - Deep Learning in Medical Ultrasound Image Segmentation: a Review [9.992387025633805]
It can be a key step to provide a reliable basis for clinical diagnosis, such as 3D reconstruction of human tissues.
Deep learning-based methods for ultrasound image segmentation are categorized into six main groups according to their architectures and training.
In the end, the challenges and potential research directions for medical ultrasound image segmentation are discussed.
arXiv Detail & Related papers (2020-02-18T16:33:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.