論文の概要: Machine Learning in Short-Reach Optical Systems: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2405.09557v1
- Date: Thu, 2 May 2024 16:04:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 03:17:55.477479
- Title: Machine Learning in Short-Reach Optical Systems: A Comprehensive Survey
- Title(参考訳): 短距離光学系における機械学習:包括的調査
- Authors: Chen Shao, Syed Moktacim Billah, Elias Giacoumidis, Shi Li, Jialei Li, Prashasti Sahu, Andre Richter, Tobias Kaefer, Michael Faerber,
- Abstract要約: 本稿では,短距離通信における機械学習技術の応用について概説する。
本稿では,機械学習信号処理における時系列手法の新しい分類法を提案する。
我々は,短時間の光通信システムにおいて,より実用的で効率的な機械学習アプローチの展開の道を開くことを目的としている。
- 参考スコア(独自算出の注目度): 2.425630641479336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, extensive research has been conducted to explore the utilization of machine learning algorithms in various direct-detected and self-coherent short-reach communication applications. These applications encompass a wide range of tasks, including bandwidth request prediction, signal quality monitoring, fault detection, traffic prediction, and digital signal processing (DSP)-based equalization. As a versatile approach, machine learning demonstrates the ability to address stochastic phenomena in optical systems networks where deterministic methods may fall short. However, when it comes to DSP equalization algorithms, their performance improvements are often marginal, and their complexity is prohibitively high, especially in cost-sensitive short-reach communications scenarios such as passive optical networks (PONs). They excel in capturing temporal dependencies, handling irregular or nonlinear patterns effectively, and accommodating variable time intervals. Within this extensive survey, we outline the application of machine learning techniques in short-reach communications, specifically emphasizing their utilization in high-bandwidth demanding PONs. Notably, we introduce a novel taxonomy for time-series methods employed in machine learning signal processing, providing a structured classification framework. Our taxonomy categorizes current time series methods into four distinct groups: traditional methods, Fourier convolution-based methods, transformer-based models, and time-series convolutional networks. Finally, we highlight prospective research directions within this rapidly evolving field and outline specific solutions to mitigate the complexity associated with hardware implementations. We aim to pave the way for more practical and efficient deployment of machine learning approaches in short-reach optical communication systems by addressing complexity concerns.
- Abstract(参考訳): 近年,様々な直接検出・自己整合型短距離通信アプリケーションにおける機械学習アルゴリズムの利用について,広範な研究が進められている。
これらのアプリケーションには、帯域幅要求予測、信号品質監視、障害検出、トラフィック予測、デジタル信号処理(DSP)に基づく等化など、幅広いタスクが含まれている。
汎用的なアプローチとして、機械学習は、決定論的手法が不足する可能性のある光学系ネットワークにおける確率現象に対処する能力を示す。
しかし、DSP等化アルゴリズムの場合、その性能改善はしばしば限界であり、特にパッシブ光ネットワーク(PON)のようなコストに敏感な短距離通信シナリオでは、その複雑さは著しく高い。
時間的依存を捕捉し、不規則パターンや非線形パターンを効果的に処理し、変動時間間隔を調節する。
本稿では,短距離通信における機械学習技術の応用について概説する。
特に、機械学習信号処理に使用される時系列手法の新たな分類法を導入し、構造化された分類フレームワークを提供する。
我々の分類学は、現在の時系列法を、伝統的な方法、フーリエ畳み込みに基づく方法、トランスフォーマーに基づくモデル、時系列畳み込みネットワークの4つのグループに分類する。
最後に、この急速に発展する分野における今後の研究の方向性を強調し、ハードウェア実装に関連する複雑さを軽減するための具体的な解決策を概説する。
我々は,複雑性問題に対処して,短時間の光通信システムにおいて,より実用的で効率的な機械学習アプローチの展開の道を開くことを目的としている。
関連論文リスト
- State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
このサーベイは、シーケンシャルなデータ処理の反復モデルに基づく最新のアプローチの詳細な概要を提供する。
新たなイメージは、標準のバックプロパゲーション・オブ・タイムから外れた学習アルゴリズムによって構成される、新しいルートを考える余地があることを示唆している。
論文 参考訳(メタデータ) (2024-06-13T12:51:22Z) - SMORE: Similarity-based Hyperdimensional Domain Adaptation for
Multi-Sensor Time Series Classification [17.052624039805856]
マルチセンサ時系列分類のための新しい資源効率ドメイン適応(DA)アルゴリズムであるSMOREを提案する。
SMOREは、最先端(SOTA)のDNNベースのDAアルゴリズムよりも平均1.98%高い精度で18.81倍高速トレーニングと4.63倍高速推論を実現している。
論文 参考訳(メタデータ) (2024-02-20T18:48:49Z) - Bayesian Inference of Stochastic Dynamical Networks [0.0]
本稿では,ネットワークトポロジと内部ダイナミクスを学習するための新しい手法を提案する。
グループスパースベイズ学習(GSBL)、BINGO、カーネルベースの方法、dynGENIE3、genIE3、ARNIと比較される。
本手法は,グループスパースベイズ学習 (GSBL), BINGO, kernel-based method, dynGENIE3, GENIE3, ARNI と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-06-02T03:22:34Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
非線形ビームフォーミングフィルタは、大規模な接続を伴う定常シナリオにおいて、線形アプローチを著しく上回る。
主な課題の1つは、これらのアルゴリズムのリアルタイム実装である。
本稿では,大規模並列化によるAPSMに基づくアルゴリズムの高速化について検討する。
論文 参考訳(メタデータ) (2022-01-13T15:20:45Z) - Mining Interpretable Spatio-temporal Logic Properties for Spatially
Distributed Systems [0.7585262843303869]
本稿では,時間的データに対する教師なし学習のためのアルゴリズムセットを提案する。
本手法は,複雑性決定木手法を用いて,有界記述のSTREL式を生成する。
本研究では, 都市交通, グリーンインフラストラクチャ, 大気質モニタリングなど多様な分野の事例研究におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2021-06-16T04:51:26Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
テラヘルツ(THz)信号生成と放射法は、無線システムの未来を形作っている。
THz 固有の信号処理技術は、THz 帯域の効率的な利用のために、この THz センシングへの関心を補う必要がある。
本稿では,信号前処理に着目した手法の概要を示す。
また,THz帯で有望な知覚能力を探索し,深層学習の有効性についても検討した。
論文 参考訳(メタデータ) (2021-04-09T01:38:34Z) - Unsupervised Clustering of Time Series Signals using Neuromorphic
Energy-Efficient Temporal Neural Networks [1.2928408516950525]
監視されていない時系列クラスタリングは、多様な産業用途で困難な問題です。
時間的ニューラルネットワークに基づく非監視時系列クラスタリングに対するニューロモーフィックアプローチを提案する。
論文 参考訳(メタデータ) (2021-02-18T07:47:43Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems [6.4332733596587115]
本稿では,障害検出のための新しいディープラーニングベースのアプローチを導入し,実際のデータセット,すなわち部分放電検出タスクのためのKaggleプラットフォーム上でテストする。
提案手法では,時系列の特徴を抽出するためのアテンション機構を備えたLong-Short Term Memoryアーキテクチャを採用し,信号の周波数情報を利用した1D-Convolutional Neural Network構造を用いて予測を行う。
論文 参考訳(メタデータ) (2020-09-15T02:01:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。