論文の概要: An EM Body Model for Device-Free Localization with Multiple Antenna Receivers: A First Study
- arxiv url: http://arxiv.org/abs/2405.09558v1
- Date: Thu, 2 May 2024 16:39:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 03:17:55.474907
- Title: An EM Body Model for Device-Free Localization with Multiple Antenna Receivers: A First Study
- Title(参考訳): マルチアンテナ受信器を用いたデバイス自由位置推定のためのEMボディモデル:最初の研究
- Authors: Vittorio Rampa, Federica Fieramosca, Stefano Savazzi, Michele D'Amico,
- Abstract要約: デバイスフリーローカライゼーション (DFL) は、電子機器を装着させることなく人を検知し、発見するパッシブ無線技術を採用している。
本稿では,人物の認識と位置推定を改善するための配列ベースのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.679900758407988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Device-Free Localization (DFL) employs passive radio techniques capable to detect and locate people without imposing them to wear any electronic device. By exploiting the Integrated Sensing and Communication paradigm, DFL networks employ Radio Frequency (RF) nodes to measure the excess attenuation introduced by the subjects (i.e., human bodies) moving inside the monitored area, and to estimate their positions and movements. Physical, statistical, and ElectroMagnetic (EM) models have been proposed in the literature to estimate the body positions according to the RF signals collected by the nodes. These body models usually employ a single-antenna processing for localization purposes. However, the availability of low-cost multi-antenna devices such as those used for WLAN (Wireless Local Area Network) applications and the timely development of array-based body models, allow us to employ array-based processing techniques in DFL networks. By exploiting a suitable array-capable EM body model, this paper proposes an array-based framework to improve people sensing and localization. In particular, some simulations are proposed and discussed to compare the model results in both single- and multi-antenna scenarios. The proposed framework paves the way for a wider use of multi-antenna devices (e.g., those employed in current IEEE 802.11ac/ax/be and forthcoming IEEE 802.11be networks) and novel beamforming algorithms for DFL scenarios.
- Abstract(参考訳): デバイスフリーローカライゼーション (DFL) は、電子機器を装着させることなく人を検知し、見つけることのできるパッシブ無線技術を採用している。
統合センシングと通信のパラダイムを活用することで、DFLネットワークは無線周波数(RF)ノードを使用して、監視領域内を移動する被験者(つまり人体)が導入する過剰な減衰を測定し、その位置と動きを推定する。
ノードが収集したRF信号に基づいて体の位置を推定する物理・統計・電磁気モデルが文献で提案されている。
これらのボディモデルは通常、ローカライゼーションのためにシングルアンテナ処理を使用する。
しかし、WLAN(Wireless Local Area Network)アプリケーションに使用されるような低コストのマルチアンテナデバイスや、配列ベースボディモデルのタイムリーな開発により、DFLネットワークに配列ベースの処理技術を採用することができる。
本稿では、適切な配列対応EMボディモデルを利用することで、人物のセンシングと位置推定を改善するための配列ベースのフレームワークを提案する。
特に,シングルアンテナとマルチアンテナの両方のシナリオでモデル結果を比較するためのシミュレーションが提案され,議論されている。
提案されたフレームワークは、マルチアンテナデバイス(例えば、現在のIEEE 802.11ac/ax/beと今後のIEEE 802.11beネットワークで採用されているもの)と、DFLシナリオのための新しいビームフォーミングアルゴリズムの幅広い使用方法を舗装している。
関連論文リスト
- Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - One-Dimensional Deep Image Prior for Curve Fitting of S-Parameters from
Electromagnetic Solvers [57.441926088870325]
Deep Image Prior(ディープ・イメージ・プライオリ、ディープ・イメージ・プライオリ、DIP)は、ランダムなd畳み込みニューラルネットワークの重みを最適化し、ノイズや過度な測定値からの信号に適合させる技術である。
本稿では,Vector Fitting (VF) の実装に対して,ほぼすべてのテスト例において優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-06T20:28:37Z) - Digital Over-the-Air Federated Learning in Multi-Antenna Systems [30.137208705209627]
デジタル変調とオーバー・ザ・エア計算(AirComp)を用いた現実的な無線通信システム上でのフェデレーション学習(FL)の性能最適化について検討する。
本稿では,デジタル変調とAirCompを組み合わせたFedAvg(FedAvg)アルゴリズムを提案する。
人工ニューラルネットワーク(ANN)は、すべてのデバイスの局所FLモデルを推定し、将来のモデル伝送のためにPSのビーム形成行列を調整するために使用される。
論文 参考訳(メタデータ) (2023-02-04T07:26:06Z) - Energy and Spectrum Efficient Federated Learning via High-Precision
Over-the-Air Computation [26.499025986273832]
フェデレートラーニング(FL)は、データをローカルに保持しながら、モバイルデバイスが共同で共有予測モデルを学ぶことを可能にする。
モバイルデバイス上でFLを実際にデプロイする上で,2つの大きな研究課題がある。
FLにおける局所モデル更新のスペクトル効率向上のためのマルチビットオーバー・ザ・エアコン(M-AirComp)手法を提案する。
論文 参考訳(メタデータ) (2022-08-15T14:47:21Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
将来的な通信網は、異種無線デバイスの成長に対応するために、少ないスペクトルに対処する必要がある。
我々は、深層ニューラルネットワークに基づくマルチタスク学習フレームワークの可能性を利用して、変調と信号分類タスクを同時に学習する。
公共利用のための包括的ヘテロジニアス無線信号データセットを提供する。
論文 参考訳(メタデータ) (2022-02-26T14:51:02Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
本稿では,2つの相乗的技術,フェデレートラーニング(FL)と幅調整可能なスリムブルニューラルネットワーク(SNN)を統合することを目的とする。
FLは、ローカルに訓練されたモバイルデバイスのモデルを交換することによって、データのプライバシを保護している。しかしながら、SNNは、特に時間変化のあるチャネル条件との無線接続下では、非自明である。
局所モデル更新のためのグローバルモデル集約と重ね合わせ訓練(ST)に重ね合わせ符号化(SC)を併用した通信およびエネルギー効率の高いSNNベースFL(SlimFL)を提案する。
論文 参考訳(メタデータ) (2021-12-05T11:17:17Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - Deep Neural Network Feature Designs for RF Data-Driven Wireless Device
Classification [9.05607520128194]
本稿では、RF通信信号の異なる構造と、送信機ハードウェア障害に起因するスペクトル放射を利用する新しい特徴設計手法を提案する。
提案するDNNの特徴は,拡張性,精度,シグネチャ・アンチ・クローニング,環境摂動に対する非感受性の観点から,分類の堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2021-03-02T20:19:05Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Federated Learning With Quantized Global Model Updates [84.55126371346452]
モバイル端末がローカルデータセットを使用してグローバルモデルをトレーニングできるフェデレーション学習について検討する。
本稿では,大域的モデルと局所的モデル更新の両方を,送信前に量子化する損失FL(LFL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-18T16:55:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。