論文の概要: KID-PPG: Knowledge Informed Deep Learning for Extracting Heart Rate from a Smartwatch
- arxiv url: http://arxiv.org/abs/2405.09559v1
- Date: Thu, 2 May 2024 16:56:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 03:17:55.472222
- Title: KID-PPG: Knowledge Informed Deep Learning for Extracting Heart Rate from a Smartwatch
- Title(参考訳): KID-PPG:スマートウォッチから心拍数を抽出するディープラーニング
- Authors: Christodoulos Kechris, Jonathan Dan, Jose Miranda, David Atienza,
- Abstract要約: 本稿では,適応線形フィルタリング,深層確率推論,データ拡張による知識情報の統合型ディープラーニングモデルを提案する。
以上の結果から,先行知識を深層学習モデルに組み込むことにより,心拍追跡の大幅な改善が示された。
このアプローチは、ディープラーニングモデルに既存のエキスパート知識を取り入れることで、様々なバイオメディカル応用の強化を約束する。
- 参考スコア(独自算出の注目度): 3.329222353111594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate extraction of heart rate from photoplethysmography (PPG) signals remains challenging due to motion artifacts and signal degradation. Although deep learning methods trained as a data-driven inference problem offer promising solutions, they often underutilize existing knowledge from the medical and signal processing community. In this paper, we address three shortcomings of deep learning models: motion artifact removal, degradation assessment, and physiologically plausible analysis of the PPG signal. We propose KID-PPG, a knowledge-informed deep learning model that integrates expert knowledge through adaptive linear filtering, deep probabilistic inference, and data augmentation. We evaluate KID-PPG on the PPGDalia dataset, achieving an average mean absolute error of 2.85 beats per minute, surpassing existing reproducible methods. Our results demonstrate a significant performance improvement in heart rate tracking through the incorporation of prior knowledge into deep learning models. This approach shows promise in enhancing various biomedical applications by incorporating existing expert knowledge in deep learning models.
- Abstract(参考訳): 光胸腺造影(PPG)信号からの心拍数の正確な抽出は、運動アーチファクトと信号劣化のため、依然として困難である。
データ駆動推論問題として訓練されたディープラーニング手法は、有望な解決策を提供するが、医療や信号処理コミュニティからの既存の知識を過小評価することが多い。
本稿では, 深層学習モデルの3つの欠点として, モーションアーティファクト除去, 劣化評価, PPG信号の生理学的解析について述べる。
KID-PPGは,適応線形フィルタリング,深層確率推論,データ拡張を通じて専門家の知識を統合する知識インフォームド・ディープラーニングモデルである。
PPGDaliaデータセット上でKID-PPGを評価し,従来の再現可能な手法を上回り,毎分平均2.85回の平均絶対誤差を達成した。
以上の結果から,先行知識を深層学習モデルに組み込むことにより,心拍追跡の大幅な向上が示された。
このアプローチは、ディープラーニングモデルに既存のエキスパート知識を取り入れることで、様々なバイオメディカル応用の強化を約束する。
関連論文リスト
- A Review of Deep Learning Methods for Photoplethysmography Data [10.27280499967643]
Photoplethysmographyは、ポータビリティ、ユーザフレンドリな操作、非侵襲機能に長けているため、有望なデバイスである。
近年の深層学習の進歩は、個人の健康管理に関わるタスクにPSG信号を活用することで顕著な成果を上げている。
論文 参考訳(メタデータ) (2024-01-23T14:11:29Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL)はラベル付きデータの不足に対する潜在的な解決策を提供する。
1次元心電図(PCG)分類におけるコントラスト学習の最適化を提案する。
トレーニング分布によっては、完全教師付きモデルの有効性が最大32%低下し、SSLモデルは最大10%低下し、場合によっては改善される。
論文 参考訳(メタデータ) (2023-12-01T11:06:00Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - An Evaluation of Lightweight Deep Learning Techniques in Medical Imaging
for High Precision COVID-19 Diagnostics [0.0]
決定支援システムは、画像の物理的検査に固有の課題を緩和する。
ほとんどのディープラーニングアルゴリズムは、リソース制約のあるデバイスの実装には適していない。
本稿では,MobileNetV2モデルを用いた新型コロナウイルス検出のための軽量深層学習手法の開発と評価について述べる。
論文 参考訳(メタデータ) (2023-05-30T13:14:03Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
本稿では,心電図信号に基づく心疾患検出の堅牢性を高めるために,生理学的に着想を得たデータ拡張手法を提案する。
我々は、ワッサーシュタイン空間の測地線に沿った他のクラスに対してデータ分布を摂動することで、拡張されたサンプルを得る。
12個の心電図信号から学習し,心臓状態の5つのカテゴリを識別できる。
論文 参考訳(メタデータ) (2022-08-02T03:14:13Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - The Way to my Heart is through Contrastive Learning: Remote
Photoplethysmography from Unlabelled Video [10.479541955106328]
ビデオから生理的信号を確実に推定する能力は、低コストで臨床前の健康モニタリングにおいて強力なツールである。
本稿では, 人の顔や皮膚の観察から血液量の変化を計測するリモート光胸腺造影法(r)の新たなアプローチを提案する。
論文 参考訳(メタデータ) (2021-11-18T15:21:33Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。