論文の概要: Detecting 5G Narrowband Jammers with CNN, k-nearest Neighbors, and Support Vector Machines
- arxiv url: http://arxiv.org/abs/2405.09564v2
- Date: Tue, 10 Sep 2024 20:42:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 20:57:55.907213
- Title: Detecting 5G Narrowband Jammers with CNN, k-nearest Neighbors, and Support Vector Machines
- Title(参考訳): CNN, k-nearest Nebors, Support Vector Machines による5G狭帯域ジャマーの検出
- Authors: Matteo Varotto, Florian Heinrichs, Timo Schuerg, Stefano Tomasin, Stefan Valentin,
- Abstract要約: 5Gセルネットワークは、無線信号の特定の制御サブチャネルを標的とする狭帯域ジャマに対して脆弱である。
1つの緩和アプローチは、機械学習に基づいて、オンライン観察システムでこのような妨害攻撃を検出することである。
本稿では,二項分類を行う機械学習モデルを用いて,物理層におけるジャミングを検出することを提案する。
- 参考スコア(独自算出の注目度): 4.678637187649889
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 5G cellular networks are particularly vulnerable against narrowband jammers that target specific control sub-channels in the radio signal. One mitigation approach is to detect such jamming attacks with an online observation system, based on machine learning. We propose to detect jamming at the physical layer with a pre-trained machine learning model that performs binary classification. Based on data from an experimental 5G network, we study the performance of different classification models. A convolutional neural network will be compared to support vector machines and k-nearest neighbors, where the last two methods are combined with principal component analysis. The obtained results show substantial differences in terms of classification accuracy and computation time.
- Abstract(参考訳): 5Gセルネットワークは、特に無線信号の特定の制御サブチャネルをターゲットにした狭帯域妨害に対して脆弱である。
1つの緩和アプローチは、機械学習に基づいて、オンライン観察システムでこのような妨害攻撃を検出することである。
本稿では,二項分類を行う機械学習モデルを用いて,物理層におけるジャミングを検出することを提案する。
実験的な5Gネットワークのデータに基づいて,異なる分類モデルの性能について検討する。
畳み込みニューラルネットワークは、ベクトルマシンとk-アネレスト隣人をサポートし、最後の2つの手法と主成分分析を組み合わせる。
その結果,分類精度と計算時間に有意差が認められた。
関連論文リスト
- One-Class Classification as GLRT for Jamming Detection in Private 5G Networks [5.237876638041339]
5Gモバイルネットワークは、業界自動化のような貴重なアプリケーションを妨げる可能性のある攻撃を妨害する脆弱性がある。
妨害攻撃を検知する専用の装置を用いて無線信号を解析することを提案する。
論文 参考訳(メタデータ) (2024-05-07T14:02:34Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Critical Analysis of 5G Networks Traffic Intrusion using PCA, t-SNE and
UMAP Visualization and Classifying Attacks [0.0]
最近発表された5Gトラフィックデータセットである5G-NIDDを用いて、機械学習とディープラーニングのアプローチを用いて、ネットワークトラフィックの異常を検出する。
相互情報とPCA技術を用いてデータ次元を減少させる。
マイノリティクラスの合成レコードを挿入することで、クラス不均衡を解消する。
論文 参考訳(メタデータ) (2023-12-08T06:43:19Z) - DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly
Detection [0.0]
ネットワーク侵入検知システム(NIDS)の検出能力を高めるために機械学習アプローチが用いられている。
最近の研究は、バイナリとマルチクラスのネットワーク異常検出タスクに従うことで、ほぼ完璧な性能を実現している。
本稿では,ネットワークデータサンプルの学習のみによるネットワーク侵入検出のためのDeep One-Class (DOC)分類器を提案する。
論文 参考訳(メタデータ) (2022-12-15T00:08:05Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
畳み込みニューラルネットワーク(CNN)は、多くの知覚的タスクにおける最先端のソリューションを定義する。
現在のCNNアプローチは、システムを騙すために特別に作られた入力の敵の摂動に対して脆弱なままである。
本稿では,ネットワークの局所固有次元(LID)と敵攻撃の関係について,最近の知見を生かした,シンプルで軽量な検出器を提案する。
論文 参考訳(メタデータ) (2022-12-13T17:51:32Z) - Bandwidth-efficient distributed neural network architectures with
application to body sensor networks [73.02174868813475]
本稿では,分散ニューラルネットワークアーキテクチャを設計するための概念設計手法について述べる。
提案手法により,損失を最小限に抑えつつ,最大20倍の帯域幅削減が可能となることを示す。
本稿では,ウェアラブル脳-コンピュータインタフェースに焦点をあてるが,他のセンサネットワークアプリケーションにも適用できる。
論文 参考訳(メタデータ) (2022-10-14T12:35:32Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Detection of gravitational-wave signals from binary neutron star mergers
using machine learning [52.77024349608834]
本稿では,重力波検出器の時系列ひずみデータを用いたニューラルネットワークに基づく機械学習アルゴリズムを提案する。
信号対雑音比が25未満の信号に対する感度は6因子改善した。
保守的な推定は、我々のアルゴリズムが信号の到着からアラート発生までの平均10.2秒の遅延を発生させることを示している。
論文 参考訳(メタデータ) (2020-06-02T10:20:11Z) - Non-Intrusive Detection of Adversarial Deep Learning Attacks via
Observer Networks [5.4572790062292125]
近年の研究では、深層学習モデルは逆入力に弱いことが示されている。
本稿では,主分類網を複数のバイナリ検出器で拡張することにより,逆入力を検出する新しい手法を提案する。
我々は、MNISTデータセットで99.5%、CIFAR-10データセットで97.5%の精度で検出する。
論文 参考訳(メタデータ) (2020-02-22T21:13:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。