One-Class Classification as GLRT for Jamming Detection in Private 5G Networks
- URL: http://arxiv.org/abs/2405.09565v1
- Date: Tue, 7 May 2024 14:02:34 GMT
- Title: One-Class Classification as GLRT for Jamming Detection in Private 5G Networks
- Authors: Matteo Varotto, Stefan Valentin, Francesco Ardizzon, Samuele Marzotto, Stefano Tomasin,
- Abstract summary: 5G mobile networks are vulnerable to jamming attacks that may jeopardize valuable applications such as industry automation.
We propose to analyze radio signals with a dedicated device to detect jamming attacks.
- Score: 5.237876638041339
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 5G mobile networks are vulnerable to jamming attacks that may jeopardize valuable applications such as industry automation. In this paper, we propose to analyze radio signals with a dedicated device to detect jamming attacks. We pursue a learning approach, with the detector being a CNN implementing a GLRT. To this end, the CNN is trained as a two-class classifier using two datasets: one of real legitimate signals and another generated artificially so that the resulting classifier implements the GLRT. The artificial dataset is generated mimicking different types of jamming signals. We evaluate the performance of this detector using experimental data obtained from a private 5G network and several jamming signals, showing the technique's effectiveness in detecting the attacks.
Related papers
- Detecting 5G Narrowband Jammers with CNN, k-nearest Neighbors, and Support Vector Machines [4.678637187649889]
5G cellular networks are vulnerable to narrowband jammers that target specific control sub-channels in the radio signal.
One mitigation approach is to detect such jamming attacks with an online observation system, based on machine learning.
We propose to detect jamming at the physical layer with a pre-trained machine learning model that performs binary classification.
arXiv Detail & Related papers (2024-05-07T13:54:12Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
We classify transient noise signals (i.e.glitches) and gravitational waves in data from the Advanced LIGO detectors.
We use models with a supervised learning approach, both trained from scratch using the Gravity Spy dataset.
We also explore a self-supervised approach, pre-training models with automatically generated pseudo-labels.
arXiv Detail & Related papers (2023-03-24T11:12:37Z) - DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly
Detection [0.0]
Machine Learning approaches have been used to enhance the detection capabilities of Network Intrusion Detection Systems (NIDSs)
Recent work has achieved near-perfect performance by following binary- and multi-class network anomaly detection tasks.
This paper proposes a Deep One-Class (DOC) classifier for network intrusion detection by only training on benign network data samples.
arXiv Detail & Related papers (2022-12-15T00:08:05Z) - Training a Bidirectional GAN-based One-Class Classifier for Network
Intrusion Detection [8.158224495708978]
Existing generative adversarial networks (GANs) are primarily used for creating synthetic samples from reals.
In our proposed method, we construct the trained encoder-discriminator as a one-class classifier based on Bidirectional GAN (Bi-GAN)
Our experimental result illustrates that our proposed method is highly effective to be used in network intrusion detection tasks.
arXiv Detail & Related papers (2022-02-02T23:51:11Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - From One to Many: A Deep Learning Coincident Gravitational-Wave Search [58.720142291102135]
We construct a two-detector search for gravitational waves from binary black hole mergers using neural networks trained on non-spinning binary black hole data from a single detector.
We find that none of these simple two-detector networks are capable of improving the sensitivity over applying networks individually to the data from the detectors.
arXiv Detail & Related papers (2021-08-24T13:25:02Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Anomaly Detection of Test-Time Evasion Attacks using Class-conditional
Generative Adversarial Networks [21.023722317810805]
We propose an attack detector based on classconditional Generative Adversaratives (GAN)
We model the distribution of clean data conditioned on a predicted class label by an Auxiliary GAN (ACGAN)
Experiments on image classification datasets under different TTE attack methods show that our method outperforms state-of-the-art detection methods.
arXiv Detail & Related papers (2021-05-21T02:51:58Z) - Self-Supervised Person Detection in 2D Range Data using a Calibrated
Camera [83.31666463259849]
We propose a method to automatically generate training labels (called pseudo-labels) for 2D LiDAR-based person detectors.
We show that self-supervised detectors, trained or fine-tuned with pseudo-labels, outperform detectors trained using manual annotations.
Our method is an effective way to improve person detectors during deployment without any additional labeling effort.
arXiv Detail & Related papers (2020-12-16T12:10:04Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
Anomaly detection-based spoof attack detection is a recent development in face Presentation Attack Detection.
In this paper, we present a deep-learning solution for anomaly detection-based spoof attack detection.
The proposed approach benefits from the representation learning power of the CNNs and learns better features for fPAD task.
arXiv Detail & Related papers (2020-07-11T21:20:55Z) - Multi-stage Jamming Attacks Detection using Deep Learning Combined with
Kernelized Support Vector Machine in 5G Cloud Radio Access Networks [17.2528983535773]
This research focuses on deploying a multi-stage machine learning-based intrusion detection (ML-IDS) in 5G C-RAN.
It can detect and classify four types of jamming attacks: constant jamming, random jamming, jamming, and reactive jamming.
The final classification accuracy of attacks is 94.51% with a 7.84% false negative rate.
arXiv Detail & Related papers (2020-04-13T17:21:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.