DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly
Detection
- URL: http://arxiv.org/abs/2212.07558v1
- Date: Thu, 15 Dec 2022 00:08:05 GMT
- Title: DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly
Detection
- Authors: Mohanad Sarhan, Gayan Kulatilleke, Wai Weng Lo, Siamak Layeghy, Marius
Portmann
- Abstract summary: Machine Learning approaches have been used to enhance the detection capabilities of Network Intrusion Detection Systems (NIDSs)
Recent work has achieved near-perfect performance by following binary- and multi-class network anomaly detection tasks.
This paper proposes a Deep One-Class (DOC) classifier for network intrusion detection by only training on benign network data samples.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) approaches have been used to enhance the detection
capabilities of Network Intrusion Detection Systems (NIDSs). Recent work has
achieved near-perfect performance by following binary- and multi-class network
anomaly detection tasks. Such systems depend on the availability of both
(benign and malicious) network data classes during the training phase. However,
attack data samples are often challenging to collect in most organisations due
to security controls preventing the penetration of known malicious traffic to
their networks. Therefore, this paper proposes a Deep One-Class (DOC)
classifier for network intrusion detection by only training on benign network
data samples. The novel one-class classification architecture consists of a
histogram-based deep feed-forward classifier to extract useful network data
features and use efficient outlier detection. The DOC classifier has been
extensively evaluated using two benchmark NIDS datasets. The results
demonstrate its superiority over current state-of-the-art one-class classifiers
in terms of detection and false positive rates.
Related papers
- SCGNet-Stacked Convolution with Gated Recurrent Unit Network for Cyber Network Intrusion Detection and Intrusion Type Classification [0.0]
Intrusion detection systems (IDSs) are far from being able to quickly and efficiently identify complex and varied network attacks.
The SCGNet is a novel deep learning architecture that we propose in this study.
It exhibits promising results on the NSL-KDD dataset in both task, network attack detection, and attack type classification with 99.76% and 98.92% accuracy, respectively.
arXiv Detail & Related papers (2024-10-29T09:09:08Z) - Multi-class Network Intrusion Detection with Class Imbalance via LSTM & SMOTE [1.0591656257413806]
This paper proposes to use oversampling techniques along with appropriate loss functions to handle class imbalance for the detection of various types of network intrusions.
Our deep learning model employs LSTM with fully connected layers to perform multi-class classification of network attacks.
arXiv Detail & Related papers (2023-10-03T07:28:04Z) - Host-Based Network Intrusion Detection via Feature Flattening and
Two-stage Collaborative Classifier [6.04077629908308]
A hybrid network intrusion detection system that combines NIDS and HIDS is proposed to improve intrusion detection performance.
A two-stage collaborative classifier is introduced that deploys two levels of ML algorithms to identify network intrusions.
The proposed method is shown to generalize across two well-known datasets, CICIDS 2018 and NDSec-1.
arXiv Detail & Related papers (2023-06-15T19:09:00Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
We show how to use Machine Learning for Network Intrusion Detection (NID) in a principled way.
We propose NetSentry, perhaps the first of its kind NIDS that builds on Bi-ALSTM, an original ensemble of sequential neural models.
We demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce.
arXiv Detail & Related papers (2022-02-20T17:41:02Z) - Training a Bidirectional GAN-based One-Class Classifier for Network
Intrusion Detection [8.158224495708978]
Existing generative adversarial networks (GANs) are primarily used for creating synthetic samples from reals.
In our proposed method, we construct the trained encoder-discriminator as a one-class classifier based on Bidirectional GAN (Bi-GAN)
Our experimental result illustrates that our proposed method is highly effective to be used in network intrusion detection tasks.
arXiv Detail & Related papers (2022-02-02T23:51:11Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
Current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos.
We present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation.
arXiv Detail & Related papers (2021-09-15T14:11:53Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.