Factual Serialization Enhancement: A Key Innovation for Chest X-ray Report Generation
- URL: http://arxiv.org/abs/2405.09586v2
- Date: Thu, 12 Sep 2024 03:11:41 GMT
- Title: Factual Serialization Enhancement: A Key Innovation for Chest X-ray Report Generation
- Authors: Kang Liu, Zhuoqi Ma, Mengmeng Liu, Zhicheng Jiao, Xiaolu Kang, Qiguang Miao, Kun Xie,
- Abstract summary: A radiology report comprises presentation-style vocabulary, which ensures clarity and organization.
A critical step in this process is to align radiographs with their corresponding reports.
To address this issue, we propose FSE, a two-stage Factual Serialization Enhancement method.
- Score: 15.82363717056198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A radiology report comprises presentation-style vocabulary, which ensures clarity and organization, and factual vocabulary, which provides accurate and objective descriptions based on observable findings. While manually writing these reports is time-consuming and labor-intensive, automatic report generation offers a promising alternative. A critical step in this process is to align radiographs with their corresponding reports. However, existing methods often rely on complete reports for alignment, overlooking the impact of presentation-style vocabulary. To address this issue, we propose FSE, a two-stage Factual Serialization Enhancement method. In Stage 1, we introduce factuality-guided contrastive learning for visual representation by maximizing the semantic correspondence between radiographs and corresponding factual descriptions. In Stage 2, we present evidence-driven report generation that enhances diagnostic accuracy by integrating insights from similar historical cases structured as factual serialization. Experiments on MIMIC-CXR and IU X-ray datasets across specific and general scenarios demonstrate that FSE outperforms state-of-the-art approaches in both natural language generation and clinical efficacy metrics. Ablation studies further emphasize the positive effects of factual serialization in Stage 1 and Stage 2. The code is available at https://github.com/mk-runner/FSE.
Related papers
- Contrastive Learning with Counterfactual Explanations for Radiology Report Generation [83.30609465252441]
We propose a textbfCountertextbfFactual textbfExplanations-based framework (CoFE) for radiology report generation.
Counterfactual explanations serve as a potent tool for understanding how decisions made by algorithms can be changed by asking what if'' scenarios.
Experiments on two benchmarks demonstrate that leveraging the counterfactual explanations enables CoFE to generate semantically coherent and factually complete reports.
arXiv Detail & Related papers (2024-07-19T17:24:25Z) - Extracting and Encoding: Leveraging Large Language Models and Medical Knowledge to Enhance Radiological Text Representation [31.370503681645804]
We present a novel two-stage framework designed to extract high-quality factual statements from free-text radiology reports.
Our framework also includes a new embedding-based metric ( CXRFE) for evaluating chest X-ray text generation systems.
arXiv Detail & Related papers (2024-07-02T04:39:19Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
We introduce a novel method, textbfStructural textbfEntities extraction and patient indications textbfIncorporation (SEI) for chest X-ray report generation.
We employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports.
We propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications.
arXiv Detail & Related papers (2024-05-23T01:29:47Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - Anticipating the Unseen Discrepancy for Vision and Language Navigation [63.399180481818405]
Vision-Language Navigation requires the agent to follow natural language instructions to reach a specific target.
The large discrepancy between seen and unseen environments makes it challenging for the agent to generalize well.
We propose Unseen Discrepancy Anticipating Vision and Language Navigation (DAVIS) that learns to generalize to unseen environments via encouraging test-time visual consistency.
arXiv Detail & Related papers (2022-09-10T19:04:40Z) - Word Graph Guided Summarization for Radiology Findings [24.790502861602075]
We propose a novel method for automatic impression generation, where a word graph is constructed from the findings to record the critical words and their relations.
A Word Graph guided Summarization model (WGSum) is designed to generate impressions with the help of the word graph.
Experimental results on two datasets, OpenI and MIMIC-CXR, confirm the validity and effectiveness of our proposed approach.
arXiv Detail & Related papers (2021-12-18T13:20:18Z) - Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation [3.3978173451092437]
Radiology report generation aims at generating descriptive text from radiology images automatically.
A typical setting consists of training encoder-decoder models on image-report pairs with a cross entropy loss.
We propose a novel weakly supervised contrastive loss for medical report generation.
arXiv Detail & Related papers (2021-09-25T00:06:23Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
Report generation for medical imaging promises to reduce workload and assist diagnosis in clinical practice.
Recent work has shown that deep learning models can successfully caption natural images.
We propose variational topic inference for automatic report generation.
arXiv Detail & Related papers (2021-07-15T13:34:38Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
We propose an Auxiliary Signal-Guided Knowledge-Decoder (ASGK) to mimic radiologists' working patterns.
ASGK integrates internal visual feature fusion and external medical linguistic information to guide medical knowledge transfer and learning.
arXiv Detail & Related papers (2020-06-06T01:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.