Training Deep Learning Models with Hybrid Datasets for Robust Automatic Target Detection on real SAR images
- URL: http://arxiv.org/abs/2405.09588v1
- Date: Wed, 15 May 2024 09:26:24 GMT
- Title: Training Deep Learning Models with Hybrid Datasets for Robust Automatic Target Detection on real SAR images
- Authors: Benjamin Camus, Théo Voillemin, Corentin Le Barbu, Jean-Christophe Louvigné, Carole Belloni, Emmanuel Vallée,
- Abstract summary: We propose a Deep Learning approach to train ATD models with synthetic target signatures produced with the MOCEM simulator.
We train ATD models specifically tailored to bridge the domain gap between synthetic and real data.
Our approach can reach up to 90% of Average Precision on real data while exclusively using synthetic targets for training.
- Score: 0.13194391758295113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose to tackle several challenges hindering the development of Automatic Target Detection (ATD) algorithms for ground targets in SAR images. To address the lack of representative training data, we propose a Deep Learning approach to train ATD models with synthetic target signatures produced with the MOCEM simulator. We define an incrustation pipeline to incorporate synthetic targets into real backgrounds. Using this hybrid dataset, we train ATD models specifically tailored to bridge the domain gap between synthetic and real data. Our approach notably relies on massive physics-based data augmentation techniques and Adversarial Training of two deep-learning detection architectures. We then test these models on several datasets, including (1) patchworks of real SAR images, (2) images with the incrustation of real targets in real backgrounds, and (3) images with the incrustation of synthetic background objects in real backgrounds. Results show that the produced hybrid datasets are exempt from image overlay bias. Our approach can reach up to 90% of Average Precision on real data while exclusively using synthetic targets for training.
Related papers
- Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets [4.696575161583618]
This study focuses on camera-based traffic sign recognition applications for advanced driver assistance systems and autonomous driving.
The proposed augmentation pipeline of synthetic datasets includes novel augmentation processes such as structured shadows and gaussian specular highlights.
Experiments showed that a synthetic image-based approach outperforms in most cases real image-based training when applied to cross-domain test datasets.
arXiv Detail & Related papers (2024-10-30T07:11:41Z) - Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Synthetic Image Data for Deep Learning [0.294944680995069]
Realistic synthetic image data rendered from 3D models can be used to augment image sets and train image classification semantic segmentation models.
We show how high quality physically-based rendering and domain randomization can efficiently create a large synthetic dataset based on production 3D CAD models of a real vehicle.
arXiv Detail & Related papers (2022-12-12T20:28:13Z) - Ground material classification and for UAV-based photogrammetric 3D data
A 2D-3D Hybrid Approach [1.3359609092684614]
In recent years, photogrammetry has been widely used in many areas to create 3D virtual data representing the physical environment.
These cutting-edge technologies have caught the US Army and Navy's attention for the purpose of rapid 3D battlefield reconstruction, virtual training, and simulations.
arXiv Detail & Related papers (2021-09-24T22:29:26Z) - From Synthetic to Real: Image Dehazing Collaborating with Unlabeled Real
Data [58.50411487497146]
We propose a novel image dehazing framework collaborating with unlabeled real data.
First, we develop a disentangled image dehazing network (DID-Net), which disentangles the feature representations into three component maps.
Then a disentangled-consistency mean-teacher network (DMT-Net) is employed to collaborate unlabeled real data for boosting single image dehazing.
arXiv Detail & Related papers (2021-08-06T04:00:28Z) - Partially fake it till you make it: mixing real and fake thermal images
for improved object detection [29.13557322147509]
We show the performance of the proposed system in the context of object detection in thermal videos.
Our single-modality detector achieves state-of-the-art results on the FLIR ADAS dataset.
arXiv Detail & Related papers (2021-06-25T12:56:09Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - PennSyn2Real: Training Object Recognition Models without Human Labeling [12.923677573437699]
We propose PennSyn2Real - a synthetic dataset consisting of more than 100,000 4K images of more than 20 types of micro aerial vehicles (MAVs)
The dataset can be used to generate arbitrary numbers of training images for high-level computer vision tasks such as MAV detection and classification.
We show that synthetic data generated using this framework can be directly used to train CNN models for common object recognition tasks such as detection and segmentation.
arXiv Detail & Related papers (2020-09-22T02:53:40Z) - Deep Traffic Sign Detection and Recognition Without Target Domain Real
Images [52.079665469286496]
We propose a novel database generation method that requires no real image from the target-domain, and (ii) templates of the traffic signs.
The method does not aim at overcoming the training with real data, but to be a compatible alternative when the real data is not available.
On large data sets, training with a fully synthetic data set almost matches the performance of training with a real one.
arXiv Detail & Related papers (2020-07-30T21:06:47Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.