論文の概要: A Survey of Generative Techniques for Spatial-Temporal Data Mining
- arxiv url: http://arxiv.org/abs/2405.09592v1
- Date: Wed, 15 May 2024 12:07:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 16:09:33.709325
- Title: A Survey of Generative Techniques for Spatial-Temporal Data Mining
- Title(参考訳): 時空間データマイニングにおける生成手法の検討
- Authors: Qianru Zhang, Haixin Wang, Cheng Long, Liangcai Su, Xingwei He, Jianlong Chang, Tailin Wu, Hongzhi Yin, Siu-Ming Yiu, Qi Tian, Christian S. Jensen,
- Abstract要約: 本稿では,空間時間データマイニングにおける生成技術の統合に焦点を当てる。
本稿では,生成技術に基づく時空間法を包括的に分析する。
また、空間時間データマイニングパイプライン用に特別に設計された標準化されたフレームワークも導入されている。
- 参考スコア(独自算出の注目度): 93.55501980723974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the integration of generative techniques into spatial-temporal data mining, considering the significant growth and diverse nature of spatial-temporal data. With the advancements in RNNs, CNNs, and other non-generative techniques, researchers have explored their application in capturing temporal and spatial dependencies within spatial-temporal data. However, the emergence of generative techniques such as LLMs, SSL, Seq2Seq and diffusion models has opened up new possibilities for enhancing spatial-temporal data mining further. The paper provides a comprehensive analysis of generative technique-based spatial-temporal methods and introduces a standardized framework specifically designed for the spatial-temporal data mining pipeline. By offering a detailed review and a novel taxonomy of spatial-temporal methodology utilizing generative techniques, the paper enables a deeper understanding of the various techniques employed in this field. Furthermore, the paper highlights promising future research directions, urging researchers to delve deeper into spatial-temporal data mining. It emphasizes the need to explore untapped opportunities and push the boundaries of knowledge to unlock new insights and improve the effectiveness and efficiency of spatial-temporal data mining. By integrating generative techniques and providing a standardized framework, the paper contributes to advancing the field and encourages researchers to explore the vast potential of generative techniques in spatial-temporal data mining.
- Abstract(参考訳): 本稿では,空間時空間データマイニングにおける生成技術の統合に着目し,空間時空間データの顕著な成長と多様性について考察する。
RNN、CNN、その他の非生成技術の発展に伴い、研究者たちは空間的時間的データ内の時間的および空間的依存関係をキャプチャーする彼らの応用を探求した。
しかし, LLM, SSL, Seq2Seq, 拡散モデルなどの生成技術が出現し, 空間時空間データマイニングの新たな可能性が高まっている。
本稿では,生成技術に基づく空間時間的手法を包括的に分析し,空間時間的データマイニングパイプラインに特化して設計された標準化されたフレームワークを提案する。
生成技術を活用した空間的時間的方法論の詳細なレビューと新しい分類法を提供することにより,本分野における様々な手法のより深い理解を可能にした。
さらに、この論文は将来有望な研究の方向性を強調し、研究者たちに時空間データマイニングを深く掘り下げるよう促している。
未解決の機会を探究し、知識の境界を押して新しい洞察を解き放ち、空間的時間的データマイニングの有効性と効率を改善する必要性を強調している。
生成技術を統合し,標準化された枠組みを提供することで,現場の進展に寄与し,空間時空間データマイニングにおける生成技術の可能性を探究する。
関連論文リスト
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Graph Masked Autoencoder for Spatio-Temporal Graph Learning [38.085962443141206]
都市センシングの分野では,交通分析,人体移動評価,犯罪予測において,効果的な時間的予測の枠組みが重要な役割を担っている。
空間的および時間的データにデータノイズと空間性が存在することは、ロバスト表現を学習する上で、既存のニューラルネットワークモデルにとって大きな課題となる。
実効時間データ拡張のための新しい自己教師型学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-14T07:33:33Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
時系列データ、特に時系列データと時間時間データは、現実世界のアプリケーションで広く使われている。
大規模言語やその他の基礎モデルの最近の進歩は、時系列データマイニングや時間データマイニングでの使用の増加に拍車を掛けている。
論文 参考訳(メタデータ) (2023-10-16T09:06:00Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - Graph Neural Network for spatiotemporal data: methods and applications [7.612070518526342]
グラフニューラルネットワーク(GNN)は、互いに依存したデータを理解する強力なツールとして登場した。
本稿では、時間領域におけるGNNの技術と応用について概観する。
論文 参考訳(メタデータ) (2023-05-30T02:27:17Z) - LibCity: A Unified Library Towards Efficient and Comprehensive Urban
Spatial-Temporal Prediction [74.08181247675095]
既存の分野には、さまざまなフォーマットで使用が難しいオープンソースデータなど、制限がある。
我々は、研究者に信頼性のある実験ツールと便利な開発フレームワークを提供するオープンソースライブラリ、LibCityを提案する。
論文 参考訳(メタデータ) (2023-04-27T17:19:26Z) - A Survey on Spatio-temporal Data Analytics Systems [8.798250996263237]
空間時間データ分析の分野では10年間の研究と開発が続けられてきた。
主な目標は、既存の作品をキャプチャ、管理、分析、視覚化するためのアルゴリズムを開発することでした。
論文 参考訳(メタデータ) (2021-03-17T19:46:16Z) - A Survey on Spatial and Spatiotemporal Prediction Methods [4.353444564058085]
本稿では,空間時間予測の原理と手法を体系的に検討する。
我々は、それらが対処する主要な課題によって分類された方法の分類を提供する。
論文 参考訳(メタデータ) (2020-12-24T18:17:35Z) - A Novel Framework for Spatio-Temporal Prediction of Environmental Data
Using Deep Learning [0.0]
本稿では,深層学習を用いた気候・環境データの分解時間予測の枠組みを紹介する。
具体的には,完全時間信号の再構成を可能にする正規格子上に空間的にマッピング可能な関数を導入する。
実世界のシミュレーションデータへの応用は,提案フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2020-07-23T07:44:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。