論文の概要: LoRA Learns Less and Forgets Less
- arxiv url: http://arxiv.org/abs/2405.09673v1
- Date: Wed, 15 May 2024 19:27:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 15:59:48.682904
- Title: LoRA Learns Less and Forgets Less
- Title(参考訳): LoRAは学習を減らし、忘れない
- Authors: Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, John P. Cunningham,
- Abstract要約: Low-Rank Adaptation (LoRA) は、大規模言語モデルのパラメータ効率の高い微調整法である。
プログラムと数学の2つの対象領域におけるLoRAの性能と完全な微調整を比較した。
- 参考スコア(独自算出の注目度): 25.09261710396838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-Rank Adaptation (LoRA) is a widely-used parameter-efficient finetuning method for large language models. LoRA saves memory by training only low rank perturbations to selected weight matrices. In this work, we compare the performance of LoRA and full finetuning on two target domains, programming and mathematics. We consider both the instruction finetuning ($\approx$100K prompt-response pairs) and continued pretraining ($\approx$10B unstructured tokens) data regimes. Our results show that, in most settings, LoRA substantially underperforms full finetuning. Nevertheless, LoRA exhibits a desirable form of regularization: it better maintains the base model's performance on tasks outside the target domain. We show that LoRA provides stronger regularization compared to common techniques such as weight decay and dropout; it also helps maintain more diverse generations. We show that full finetuning learns perturbations with a rank that is 10-100X greater than typical LoRA configurations, possibly explaining some of the reported gaps. We conclude by proposing best practices for finetuning with LoRA.
- Abstract(参考訳): Low-Rank Adaptation (LoRA) は、大規模言語モデルのパラメータ効率の高い微調整法である。
LoRAは、選択した重量行列に対して低いランクの摂動のみをトレーニングすることでメモリを節約する。
本研究は,LoRAの性能と,プログラムと数学の2つの対象領域における完全なファインタニングを比較した。
命令の微調整($100Kのプロンプト-レスポンスペア)と事前トレーニング($10Bの非構造化トークン)の両方を検討します。
その結果、ほとんどの環境では、LoRAは完全な微調整を著しく下回っていることがわかった。
それでも、LoRAは望ましい正規化形態を示しており、ベースモデルのパフォーマンスをターゲットドメイン外のタスクでより良く維持する。
また,LoRAは,減量や脱落といった一般的な手法と比較して,より多種多様な世代を維持する上でも有効であることを示す。
完全な微調整は通常のLoRA構成よりも10~100倍大きいランクの摂動を学習し、報告されたギャップのいくつかを説明する。
LoRAを用いたファインタニングのベストプラクティスを提案して結論付けます。
関連論文リスト
- LoRA vs Full Fine-tuning: An Illusion of Equivalence [76.11938177294178]
本研究では, 異なる微調整法が, スペクトル特性のレンズを用いてモデルの重み行列を解析することにより, 事前学習モデルを変化させる方法について検討した。
単一値分解が全く異なる構造を持つ全微調整およびLoRA収量行列が得られた。
イントルーダ次元がLoRAの微調整モデルになぜ現れるのか、なぜそれらが望ましくないのか、そしてどのようにしてその効果を最小化できるかを検討することで結論を下す。
論文 参考訳(メタデータ) (2024-10-28T17:14:01Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - ALLoRA: Adaptive Learning Rate Mitigates LoRA Fatal Flaws [14.17396731469533]
Low-Rank Adaptation (LoRA)は、Large Language Modelファインタニングのパンとバターである。
LoRAの微調整には,データ量やトレーニング手順の制限が3つあります。
私たちは、Adaptive Learning rate-coined ALLoRAを使ったDropout-free、スケーリングなし、LoRAというエレガントなソリューションを見つけました。
論文 参考訳(メタデータ) (2024-10-13T01:57:38Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
低ランク適応(LoRA)の改良フレームワークであるResLoRAを提案する。
提案手法は,LoRAと比較してトレーニング可能なパラメータや推論コストを必要とせずに,より少ないトレーニングステップでより良い結果を得ることができる。
NLG,NLU,テキスト・ツー・イメージタスクの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-02-28T04:33:20Z) - PeriodicLoRA: Breaking the Low-Rank Bottleneck in LoRA Optimization [39.30090456724925]
監視された微調整は、下流タスクに大規模言語モデル(LLM)を適用する最も一般的な方法である。
完全な微調整には膨大な計算資源が必要である。
LoRAは最も広く使われている手法の1つであり、最適化過程は本質的に低次元であると仮定する。
論文 参考訳(メタデータ) (2024-02-25T16:43:41Z) - LoRA+: Efficient Low Rank Adaptation of Large Models [13.074320303580361]
低ランク適応(LoRA)は,大幅モデル(埋め込み次元)の最適下微細化につながることを示す。
そこで, このLoRAの準最適性は, 適応行列 A と B の学習率を良好に設定することで, 簡単に補正可能であることを示す。
我々の実験では、LoRA$+$は、LoRAと同じ計算コストで性能(1-2$%の改善)と微調整速度($sim$2X SpeedUpまで)を改善する。
論文 参考訳(メタデータ) (2024-02-19T18:33:49Z) - LoRA-Flow: Dynamic LoRA Fusion for Large Language Models in Generative
Tasks [72.88244322513039]
LoRAは、ダウンストリームタスクやドメイン毎に大きな言語モデル(LLM)をカスタマイズするために軽量モジュールを使用している。
動的重みを利用して異なるLoRAの影響を調整するLoRA-Flowを提案する。
6つの生成タスクに対する実験により、我々の手法はタスクレベルの融合重みでベースラインを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2024-02-18T04:41:25Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
本稿では,FTとLoRAの相違点を明らかにするために,新しい重み分解解析法を提案する。
本研究は、FTの学習能力に類似することを目的として、重量分解低ランク適応(DoRA)を提案する。
DoRAは、事前訓練された重量を、微調整のための大きさと方向の2つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-02-14T17:59:34Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。