The radius of statistical efficiency
- URL: http://arxiv.org/abs/2405.09676v1
- Date: Wed, 15 May 2024 19:36:08 GMT
- Title: The radius of statistical efficiency
- Authors: Joshua Cutler, Mateo Díaz, Dmitriy Drusvyatskiy,
- Abstract summary: We introduce a measure of robustness of an estimation problem: the radius of statistical efficiency (RSE)
RSE is the size of the smallest perturbation to the problem data that renders the Fisher information matrix singular.
We observe a precise reciprocal relationship between RSE and the intrinsic complexity/sensitivity of the problem instance, paralleling the classical Eckart-Young theorem in numerical analysis.
- Score: 8.771678221101368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical results in asymptotic statistics show that the Fisher information matrix controls the difficulty of estimating a statistical model from observed data. In this work, we introduce a companion measure of robustness of an estimation problem: the radius of statistical efficiency (RSE) is the size of the smallest perturbation to the problem data that renders the Fisher information matrix singular. We compute RSE up to numerical constants for a variety of test bed problems, including principal component analysis, generalized linear models, phase retrieval, bilinear sensing, and matrix completion. In all cases, the RSE quantifies the compatibility between the covariance of the population data and the latent model parameter. Interestingly, we observe a precise reciprocal relationship between RSE and the intrinsic complexity/sensitivity of the problem instance, paralleling the classical Eckart-Young theorem in numerical analysis.
Related papers
- Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
Chain-of-Thought (CoT) prompting and its variants have gained popularity as effective methods for solving multi-step reasoning problems.
We analyze CoT prompting from a statistical estimation perspective, providing a comprehensive characterization of its sample complexity.
arXiv Detail & Related papers (2024-08-25T04:07:18Z) - Robust learning of data anomalies with analytically-solvable entropic
outlier sparsification [0.0]
Outlier Sparsification (EOS) is proposed as a robust computational strategy for the detection of data anomalies.
The performance of EOS is compared to a range of commonly-used tools on synthetic problems and on partially-mislabeled supervised classification problems from biomedicine.
arXiv Detail & Related papers (2021-12-22T10:13:29Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - Low-rank statistical finite elements for scalable model-data synthesis [0.8602553195689513]
statFEM acknowledges a priori model misspecification, by embedding forcing within the governing equations.
The method reconstructs the observed data-generating processes with minimal loss of information.
This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix.
arXiv Detail & Related papers (2021-09-10T09:51:43Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Stochastic Approximation for Online Tensorial Independent Component
Analysis [98.34292831923335]
Independent component analysis (ICA) has been a popular dimension reduction tool in statistical machine learning and signal processing.
In this paper, we present a by-product online tensorial algorithm that estimates for each independent component.
arXiv Detail & Related papers (2020-12-28T18:52:37Z) - A connection between the pattern classification problem and the General
Linear Model for statistical inference [0.2320417845168326]
Both approaches, i.e. GLM and LRM, apply to different domains, the observation and the label domains.
We derive a statistical test based on a more refined predictive algorithm.
The MLE-based inference employs a residual score and includes the upper bound to compute a better estimation of the actual (real) error.
arXiv Detail & Related papers (2020-12-16T12:26:26Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.