Point2SSM++: Self-Supervised Learning of Anatomical Shape Models from Point Clouds
- URL: http://arxiv.org/abs/2405.09707v1
- Date: Wed, 15 May 2024 21:13:54 GMT
- Title: Point2SSM++: Self-Supervised Learning of Anatomical Shape Models from Point Clouds
- Authors: Jadie Adams, Shireen Elhabian,
- Abstract summary: Correspondence-based statistical shape modeling (SSM) stands as a powerful technology for morphometric analysis in clinical research.
Point2SSM++ is a principled, self-supervised deep learning approach that learns correspondence points from point cloud representations of anatomical shapes.
We present principled extensions of Point2SSM++ tailored for dynamictemporal and multi-anatomy scenarios.
- Score: 4.972323953932128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Correspondence-based statistical shape modeling (SSM) stands as a powerful technology for morphometric analysis in clinical research. SSM facilitates population-level characterization and quantification of anatomical shapes such as bones and organs, aiding in pathology and disease diagnostics and treatment planning. Despite its potential, SSM remains under-utilized in medical research due to the significant overhead associated with automatic construction methods, which demand complete, aligned shape surface representations. Additionally, optimization-based techniques rely on bias-inducing assumptions or templates and have prolonged inference times as the entire cohort is simultaneously optimized. To overcome these challenges, we introduce Point2SSM++, a principled, self-supervised deep learning approach that directly learns correspondence points from point cloud representations of anatomical shapes. Point2SSM++ is robust to misaligned and inconsistent input, providing SSM that accurately samples individual shape surfaces while effectively capturing population-level statistics. Additionally, we present principled extensions of Point2SSM++ to adapt it for dynamic spatiotemporal and multi-anatomy use cases, demonstrating the broad versatility of the Point2SSM++ framework. Furthermore, we present extensions of Point2SSM++ tailored for dynamic spatiotemporal and multi-anatomy scenarios, showcasing the broad versatility of the framework. Through extensive validation across diverse anatomies, evaluation metrics, and clinically relevant downstream tasks, we demonstrate Point2SSM++'s superiority over existing state-of-the-art deep learning models and traditional approaches. Point2SSM++ substantially enhances the feasibility of SSM generation and significantly broadens its array of potential clinical applications.
Related papers
- Mesh2SSM++: A Probabilistic Framework for Unsupervised Learning of Statistical Shape Model of Anatomies from Surface Meshes [0.0]
Mesh2SSM++ is a novel approach that learns to estimate correspondences from meshes in an unsupervised manner.
Its ability to operate directly on meshes, combined with computational efficiency and interpretability, makes it an attractive alternative to traditional and deep learning-based SSM approaches.
arXiv Detail & Related papers (2025-02-11T00:19:23Z) - Inter-slice Super-resolution of Magnetic Resonance Images by Pre-training and Self-supervised Fine-tuning [49.197385954021456]
In clinical practice, 2D magnetic resonance (MR) sequences are widely adopted. While individual 2D slices can be stacked to form a 3D volume, the relatively large slice spacing can pose challenges for visualization and subsequent analysis tasks.
To reduce slice spacing, deep-learning-based super-resolution techniques are widely investigated.
Most current solutions require a substantial number of paired high-resolution and low-resolution images for supervised training, which are typically unavailable in real-world scenarios.
arXiv Detail & Related papers (2024-06-10T02:20:26Z) - Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images [4.424170214926035]
Correspondence-based statistical shape modeling (SSM) facilitates population-level morphometrics.
Recent advancements in deep learning have streamlined this process in inference.
We introduce a weakly supervised deep learning approach to predict SSM from images using point cloud supervision.
arXiv Detail & Related papers (2024-05-15T20:47:59Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - Point2SSM: Learning Morphological Variations of Anatomies from Point
Cloud [5.874142059884521]
We present Point2SSM, a novel unsupervised learning approach for constructing correspondence-based statistical shape models (SSMs) directly from raw point clouds.
SSM is crucial in clinical research, enabling population-level analysis of morphological variation in bones and organs.
arXiv Detail & Related papers (2023-05-23T19:36:24Z) - Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy [0.0]
We propose Mesh2SSM, a new approach that leverages unsupervised, permutation-invariant representation learning to estimate how to deform a template point cloud to subject-specific meshes.
Mesh2SSM can also learn a population-specific template, reducing any bias due to template selection.
arXiv Detail & Related papers (2023-05-13T00:03:59Z) - Can point cloud networks learn statistical shape models of anatomies? [0.0]
We show that point cloud encoder-decoder-based completion networks can provide an untapped potential for Statistical Shape Modeling.
Our work paves the way for further exploration of point cloud deep learning for SSM.
arXiv Detail & Related papers (2023-05-09T17:01:17Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
We systematically assess the outcome of widely used, state-of-the-art SSM tools.
We propose validation frameworks for anatomical landmark/measurement inference and lesion screening.
ShapeWorks and Deformetrica shape models are found to capture clinically relevant population-level variability.
arXiv Detail & Related papers (2020-09-07T03:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.