Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy
- URL: http://arxiv.org/abs/2305.07805v2
- Date: Sun, 30 Jul 2023 06:10:16 GMT
- Title: Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy
- Authors: Krithika Iyer, Shireen Elhabian
- Abstract summary: We propose Mesh2SSM, a new approach that leverages unsupervised, permutation-invariant representation learning to estimate how to deform a template point cloud to subject-specific meshes.
Mesh2SSM can also learn a population-specific template, reducing any bias due to template selection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical shape modeling is the computational process of discovering
significant shape parameters from segmented anatomies captured by medical
images (such as MRI and CT scans), which can fully describe subject-specific
anatomy in the context of a population. The presence of substantial non-linear
variability in human anatomy often makes the traditional shape modeling process
challenging. Deep learning techniques can learn complex non-linear
representations of shapes and generate statistical shape models that are more
faithful to the underlying population-level variability. However, existing deep
learning models still have limitations and require established/optimized shape
models for training. We propose Mesh2SSM, a new approach that leverages
unsupervised, permutation-invariant representation learning to estimate how to
deform a template point cloud to subject-specific meshes, forming a
correspondence-based shape model. Mesh2SSM can also learn a population-specific
template, reducing any bias due to template selection. The proposed method
operates directly on meshes and is computationally efficient, making it an
attractive alternative to traditional and deep learning-based SSM approaches.
Related papers
- SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images [5.507868474642766]
We introduce SCorP, a novel framework capable of predicting surface-based correspondences directly from unsegmented images.
The proposed model streamlines the training and inference phases by removing the supervision for the correspondence prediction task.
arXiv Detail & Related papers (2024-04-27T17:56:58Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeIT represents an anatomical structure with an implicit template field shared within the same category.
It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape.
A template Interaction Module is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes.
arXiv Detail & Related papers (2023-12-11T07:09:32Z) - ADASSM: Adversarial Data Augmentation in Statistical Shape Models From
Images [0.8192907805418583]
This paper introduces a novel strategy for on-the-fly data augmentation for the Image-to-SSM framework by leveraging data-dependent noise generation or texture augmentation.
Our approach achieves improved accuracy by encouraging the model to focus on the underlying geometry rather than relying solely on pixel values.
arXiv Detail & Related papers (2023-07-06T20:21:12Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - Landmark-free Statistical Shape Modeling via Neural Flow Deformations [0.5897108307012394]
We present FlowSSM, a novel shape modeling approach that learns shape variability without requiring dense correspondence between training instances.
Our model outperforms state-of-the-art methods in providing an expressive and robust shape prior for distal femur and liver.
arXiv Detail & Related papers (2022-09-14T18:17:19Z) - Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven
Approach [0.0]
Particle-based shape modeling (PSM) is a data-driven approach that captures population-level shape variations.
This paper proposes a data-driven approach inspired by the PSM method to learn population-level temporal shape changes directly from shape data.
arXiv Detail & Related papers (2022-09-06T18:00:45Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Dynamic multi feature-class Gaussian process models [0.0]
This study presents a statistical modelling method for automatic learning of shape, pose and intensity features in medical images.
A DMFC-GPM is a Gaussian process (GP)-based model with a shared latent space that encodes linear and non-linear variation.
The model performance results suggest that this new modelling paradigm is robust, accurate, accessible, and has potential applications.
arXiv Detail & Related papers (2021-12-08T15:12:47Z) - tFold-TR: Combining Deep Learning Enhanced Hybrid Potential Energy for
Template-Based Modelling Structure Refinement [53.98034511648985]
The current template-based modeling approach suffers from two important problems.
The accuracy of the distance pairs from different regions of the template varies, and this information is not well introduced into the modeling.
Two neural network models predict the distance information of the missing regions and the accuracy of the distance pairs of different regions in the template modeling structure.
arXiv Detail & Related papers (2021-05-10T13:32:12Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
We systematically assess the outcome of widely used, state-of-the-art SSM tools.
We propose validation frameworks for anatomical landmark/measurement inference and lesion screening.
ShapeWorks and Deformetrica shape models are found to capture clinically relevant population-level variability.
arXiv Detail & Related papers (2020-09-07T03:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.