論文の概要: Automating the Training and Deployment of Models in MLOps by Integrating Systems with Machine Learning
- arxiv url: http://arxiv.org/abs/2405.09819v1
- Date: Thu, 16 May 2024 05:36:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 15:20:51.609200
- Title: Automating the Training and Deployment of Models in MLOps by Integrating Systems with Machine Learning
- Title(参考訳): 機械学習とシステムを統合するMLOpsにおけるモデルのトレーニングとデプロイの自動化
- Authors: Penghao Liang, Bo Song, Xiaoan Zhan, Zhou Chen, Jiaqiang Yuan,
- Abstract要約: 実世界の応用における機械学習の重要性を紹介し、MLOpsの台頭を探求する。
MLOpsの進化と従来のソフトウェア開発手法との関係を概観することにより,既存のMLOpsが直面する問題を機械学習に統合し,生産性を向上させる方法を提案する。
- 参考スコア(独自算出の注目度): 5.565764053895849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article introduces the importance of machine learning in real-world applications and explores the rise of MLOps (Machine Learning Operations) and its importance for solving challenges such as model deployment and performance monitoring. By reviewing the evolution of MLOps and its relationship to traditional software development methods, the paper proposes ways to integrate the system into machine learning to solve the problems faced by existing MLOps and improve productivity. This paper focuses on the importance of automated model training, and the method to ensure the transparency and repeatability of the training process through version control system. In addition, the challenges of integrating machine learning components into traditional CI/CD pipelines are discussed, and solutions such as versioning environments and containerization are proposed. Finally, the paper emphasizes the importance of continuous monitoring and feedback loops after model deployment to maintain model performance and reliability. Using case studies and best practices from Netflix, the article presents key strategies and lessons learned for successful implementation of MLOps practices, providing valuable references for other organizations to build and optimize their own MLOps practices.
- Abstract(参考訳): この記事では、実世界のアプリケーションにおける機械学習の重要性を紹介し、MLOps(Machine Learning Operations)の台頭と、モデルデプロイメントやパフォーマンス監視といった課題解決におけるその重要性について説明する。
MLOpsの進化と従来のソフトウェア開発手法との関係を概観することにより,既存のMLOpsが直面する問題を機械学習に統合し,生産性を向上させる方法を提案する。
本稿では、自動モデルトレーニングの重要性と、バージョン管理システムによるトレーニングプロセスの透明性と再現性を保証する方法に焦点を当てる。
さらに、機械学習コンポーネントを従来のCI/CDパイプラインに統合するという課題についても論じ、バージョニング環境やコンテナ化といったソリューションが提案されている。
最後に、モデルの性能と信頼性を維持するため、モデル展開後の継続的監視とフィードバックループの重要性を強調した。
Netflixのケーススタディとベストプラクティスを使って、記事はMLOpsプラクティスを成功させるために学んだ重要な戦略と教訓を示し、他の組織が独自のMLOpsプラクティスを構築し、最適化するための貴重なリファレンスを提供する。
関連論文リスト
- Process Modeling With Large Language Models [42.0652924091318]
本稿では,大規模言語モデル(LLM)のプロセスモデリングへの統合について検討する。
プロセスモデルの自動生成と反復的改善にLLMを利用するフレームワークを提案する。
予備的な結果は、プロセスモデリングタスクを合理化するフレームワークの能力を示している。
論文 参考訳(メタデータ) (2024-03-12T11:27:47Z) - Towards MLOps: A DevOps Tools Recommender System for Machine Learning
System [1.065497990128313]
MLOpsと機械学習システムは、要求の従来のシステムとは異なり、新しいデータで進化する。
本稿では,コンテキスト情報を処理するレコメンデーションシステムのためのフレームワークを提案する。
ルールベース,無作為林,決定木およびk-アネレスト近傍の4つの異なるアプローチについて検討した。
論文 参考訳(メタデータ) (2024-02-20T09:57:49Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Exploring MLOps Dynamics: An Experimental Analysis in a Real-World
Machine Learning Project [0.0]
この実験には総合的なMLOpsワークフローが含まれており、問題定義、データ取得、データ準備、モデル開発、モデルデプロイメント、監視、管理、スケーラビリティ、ガバナンスとコンプライアンスといった重要なフェーズをカバーしている。
体系的な追跡手法を用いて、焦点を絞ったメインフェーズから特定のフェーズへの修正を文書化し、そのような修正の理由を捉えた。
その結果得られたデータは、MLOpsプロセスの相互依存性と実験フレームワーク内の反復的な特性を視覚的に表現する。
論文 参考訳(メタデータ) (2023-07-22T10:33:19Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
本稿では,機械学習アプリケーション開発のためのプロセスモデルを提案する。
第1フェーズでは、データの可用性がプロジェクトの実現可能性に影響を与えることが多いため、ビジネスとデータの理解が結合されます。
第6フェーズでは、機械学習アプリケーションの監視とメンテナンスに関する最先端のアプローチがカバーされている。
論文 参考訳(メタデータ) (2020-03-11T08:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。