Infrared Adversarial Car Stickers
- URL: http://arxiv.org/abs/2405.09924v1
- Date: Thu, 16 May 2024 09:26:19 GMT
- Title: Infrared Adversarial Car Stickers
- Authors: Xiaopei Zhu, Yuqiu Liu, Zhanhao Hu, Jianmin Li, Xiaolin Hu,
- Abstract summary: We propose a physical attack method against infrared detectors based on 3D modeling, which is applied to a real car.
The goal is to design a set of infrared adversarial stickers to make cars invisible to infrared detectors at various viewing angles, distances, and scenes.
- Score: 18.913361704019973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared physical adversarial examples are of great significance for studying the security of infrared AI systems that are widely used in our lives such as autonomous driving. Previous infrared physical attacks mainly focused on 2D infrared pedestrian detection which may not fully manifest its destructiveness to AI systems. In this work, we propose a physical attack method against infrared detectors based on 3D modeling, which is applied to a real car. The goal is to design a set of infrared adversarial stickers to make cars invisible to infrared detectors at various viewing angles, distances, and scenes. We build a 3D infrared car model with real infrared characteristics and propose an infrared adversarial pattern generation method based on 3D mesh shadow. We propose a 3D control points-based mesh smoothing algorithm and use a set of smoothness loss functions to enhance the smoothness of adversarial meshes and facilitate the sticker implementation. Besides, We designed the aluminum stickers and conducted physical experiments on two real Mercedes-Benz A200L cars. Our adversarial stickers hid the cars from Faster RCNN, an object detector, at various viewing angles, distances, and scenes. The attack success rate (ASR) was 91.49% for real cars. In comparison, the ASRs of random stickers and no sticker were only 6.21% and 0.66%, respectively. In addition, the ASRs of the designed stickers against six unseen object detectors such as YOLOv3 and Deformable DETR were between 73.35%-95.80%, showing good transferability of the attack performance across detectors.
Related papers
- Invisible Reflections: Leveraging Infrared Laser Reflections to Target
Traffic Sign Perception [25.566091959509986]
Road signs indicate locally active rules, such as speed limits and requirements to yield or stop.
Recent research has demonstrated attacks, such as adding stickers or projected colored patches to signs, that cause CAV misinterpretation.
We have developed an effective physical-world attack that leverages the sensitivity of filterless image sensors.
arXiv Detail & Related papers (2024-01-07T21:22:42Z) - Unified Adversarial Patch for Cross-modal Attacks in the Physical World [11.24237636482709]
We propose a unified adversarial patch to fool visible and infrared object detectors at the same time via a single patch.
Considering different imaging mechanisms of visible and infrared sensors, our work focuses on modeling the shapes of adversarial patches.
Results show that our unified patch achieves an Attack Success Rate (ASR) of 73.33% and 69.17%, respectively.
arXiv Detail & Related papers (2023-07-15T17:45:17Z) - Physically Adversarial Infrared Patches with Learnable Shapes and
Locations [1.1172382217477126]
We propose a physically feasible infrared attack method called "adversarial infrared patches"
Considering the imaging mechanism of infrared cameras by capturing objects' thermal radiation, adversarial infrared patches conduct attacks by attaching a patch of thermal insulation materials on the target object to manipulate its thermal distribution.
We verify adversarial infrared patches in different object detection tasks with various object detectors.
arXiv Detail & Related papers (2023-03-24T09:11:36Z) - Far3Det: Towards Far-Field 3D Detection [67.38417186733487]
We focus on the task of far-field 3D detection (Far3Det) of objects beyond a certain distance from an observer.
Far3Det is particularly important for autonomous vehicles (AVs) operating at highway speeds.
We develop a method to find well-annotated scenes from the nuScenes dataset and derive a well-annotated far-field validation set.
We propose a Far3Det evaluation protocol and explore various 3D detection methods for Far3Det.
arXiv Detail & Related papers (2022-11-25T02:07:57Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
We present a deep neural network (DNN) that detects dynamic obstacles and drivable free space using automotive RADAR sensors.
The network runs faster than real time on an embedded GPU and shows good generalization across geographic regions.
arXiv Detail & Related papers (2022-09-29T01:30:34Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Fooling thermal infrared pedestrian detectors in real world using small
bulbs [21.79185446638658]
We propose a physical attack method with small bulbs on a board against the state of-the-art pedestrian detectors.
Our goal is to make infrared pedestrian detectors unable to detect real-world pedestrians.
arXiv Detail & Related papers (2021-01-20T14:26:09Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
We present a method to generate universal 3D adversarial objects to fool LiDAR detectors.
In particular, we demonstrate that placing an adversarial object on the rooftop of any target vehicle to hide the vehicle entirely from LiDAR detectors with a success rate of 80%.
This is one step closer towards safer self-driving under unseen conditions from limited training data.
arXiv Detail & Related papers (2020-04-01T16:11:04Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image.
We construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night.
arXiv Detail & Related papers (2020-03-05T05:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.