論文の概要: KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment
- arxiv url: http://arxiv.org/abs/2405.09964v1
- Date: Thu, 16 May 2024 10:15:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 14:41:47.972572
- Title: KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment
- Title(参考訳): KPNDepth:複雑な雨環境下でのレーン画像の深さ推定
- Authors: Zhengxu Shi,
- Abstract要約: そこで本研究では,オフラインデータに基づいて学習したデュアルレイヤの画素単位の畳み込みカーネル予測ネットワークを提案する。
対象画像に対して2組の独立畳み込みカーネルを予測することにより、複雑な環境要因による深度情報損失を復元する。
現在,降雨レーンデータがないため,画像合成アルゴリズムRCFLaneを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of deep neural network generative models in recent years, significant progress has been made in the research of depth estimation in lane scenes. However, current research achievements are mainly focused on clear daytime scenarios. In complex rainy environments, the influence of rain streaks and local fog effects often leads to erroneous increases in the overall depth estimation values in images. Moreover, these natural factors can introduce disturbances to the accurate prediction of depth boundaries in images. In this paper, we investigate lane depth estimation in complex rainy environments. Based on the concept of convolutional kernel prediction, we propose a dual-layer pixel-wise convolutional kernel prediction network trained on offline data. By predicting two sets of independent convolutional kernels for the target image, we restore the depth information loss caused by complex environmental factors and address the issue of rain streak artifacts generated by a single convolutional kernel set. Furthermore, considering the lack of real rainy lane data currently available, we introduce an image synthesis algorithm, RCFLane, which comprehensively considers the darkening of the environment due to rainfall and local fog effects. We create a synthetic dataset containing 820 experimental images, which we refer to as RainKITTI, on the commonly used depth estimation dataset KITTI. Extensive experiments demonstrate that our proposed depth estimation framework achieves favorable results in highly complex lane rainy environments.
- Abstract(参考訳): 近年のディープニューラルネットワーク生成モデルの発展に伴い、レーンシーンにおける深度推定の研究において大きな進展が見られた。
しかし、現在の研究成果は主に晴れた昼のシナリオに焦点を当てている。
複雑な雨天環境では、雨天の影響と局所霧の影響が、画像の全体深度推定値の誤った増加に繋がることが多い。
さらに、これらの自然要因は、画像の深さ境界の正確な予測に障害をもたらす可能性がある。
本稿では,複雑な降雨環境におけるレーン深さ推定について検討する。
本稿では、畳み込みカーネル予測の概念に基づいて、オフラインデータに基づいて訓練された2層級畳み込みカーネル予測ネットワークを提案する。
対象画像に対して2つの独立した畳み込みカーネルを予測することにより、複雑な環境要因による深度情報損失を回復し、単一の畳み込みカーネルセットによって生成された雨天人工物の問題に対処する。
さらに,現在利用可能な降雨レーンデータがないことを踏まえ,降雨と局所霧の影響による環境の暗化を包括的に考慮した画像合成アルゴリズムRCFLaneを導入する。
我々は,一般的に使用されている深度推定データセットKITTIに基づいて,RainKITTIと呼ばれる820個の実験画像を含む合成データセットを作成する。
大規模な実験により,提案した深度推定フレームワークは,高度に複雑なレーン雨環境において良好な結果が得られることが示された。
関連論文リスト
- RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering [50.14860376758962]
多視点降雨画像の集合からクリーンなシーンを再構築するための教師なしフレームワークであるRainyScapeを提案する。
ニューラルネットワークのスペクトルバイアス特性に基づいて、まずニューラルネットワークのレンダリングパイプラインを最適化し、低周波シーン表現を得る。
我々は2つのモジュールを協調的に最適化し,適応的指向性勾配に基づく再構成損失によって駆動する。
論文 参考訳(メタデータ) (2024-04-17T14:07:22Z) - TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
本研究は,降雨の基盤となる物理的発生機構を十分に考慮した,新しい深層学習型降雨発生器を提案する。
その意義は、発電機が予想される雨をシミュレートするために雨の本質的な要素を精巧に設計するだけでなく、複雑で多様な雨のイメージに微妙に適応することにある。
提案した雨発生器が発生した雨は, 高品質であるだけでなく, 排水作業や下流作業にも有効であることを示す。
論文 参考訳(メタデータ) (2024-03-15T03:27:39Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Towards Ground Truth for Single Image Deraining [45.50400293855075]
実世界の雨天とクリーンなイメージペアの大規模データセットを提案する。
雨天と清潔な画像の間の雨変量損失を最小限に抑えて、基盤となるシーンを再構築するディープニューラルネットワークを提案する。
本モデルでは, 種々の条件下での実際の降雨画像において, 最先端のデレーニング手法よりも優れた性能を示すことができる。
論文 参考訳(メタデータ) (2022-06-22T00:10:06Z) - Semi-MoreGAN: A New Semi-supervised Generative Adversarial Network for
Mixture of Rain Removal [18.04268933542476]
降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水)
セミモレGANは、4つの重要なモジュールで構成されている: (I) 正確な深度推定を提供する新しい注意深度予測ネットワーク、 (ii) 詳細な画像コンテキスト特徴を生成するためによく設計された詳細残差ブロックで構成されたコンテキスト特徴予測ネットワーク、 (iii) ピラミッド深度誘導非局所ネットワークにより画像コンテキストを深度情報と有効に統合し、最終雨量のない画像を生成する、 (iv) モデルに制限を加えるための包括的な半教師付き損失関数。
論文 参考訳(メタデータ) (2022-04-28T11:35:26Z) - A high-precision self-supervised monocular visual odometry in foggy
weather based on robust cycled generative adversarial networks and multi-task
learning aided depth estimation [0.0]
本稿では,霧の天候下でのナビゲーションに特化して設計された,高精度な自己監督型単分子VOを提案する。
サイクル生成対向ネットワークは、前と後ろの半サイクルに一貫した推定を強制することで、高品質な自己監督的損失を得るように設計されている。
霧の天候における自己監督的損失に対する複雑な光度変化の干渉を取り除くため、勾配に基づく損失と知覚的損失が導入された。
論文 参考訳(メタデータ) (2022-03-09T15:41:57Z) - Wild ToFu: Improving Range and Quality of Indirect Time-of-Flight Depth
with RGB Fusion in Challenging Environments [56.306567220448684]
本稿では,ノイズの多い生のI-ToF信号とRGB画像を用いた学習に基づくエンド・ツー・エンドの深度予測ネットワークを提案する。
最終深度マップでは,ベースラインアプローチと比較して40%以上のRMSE改善が見られた。
論文 参考訳(メタデータ) (2021-12-07T15:04:14Z) - Unsupervised Monocular Depth Estimation in Highly Complex Environments [9.580317751486636]
教師なし単分子深度推定法は主に日中のシナリオに焦点を当てる。
夜、雨の夜、または雪の冬など、いくつかの困難な環境では、異なるフレーム上の同じピクセルの光度測定は相容れない。
本稿では、ドメイン適応を用いてこの問題に対処し、画像転送に基づく一貫した適応フレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-28T02:35:38Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
コスト効率のよいセンサで得られたデータからシーン形状を推定することは、ロボットや自動運転車にとって鍵となる。
本稿では,1枚のRGB画像から,低コストな能動深度センサによるスパース計測により,深度を推定する問題について検討する。
sparse networks (sans) は,深さ予測と完了という2つのタスクをmonodepthネットワークで実行可能にする,新しいモジュールである。
論文 参考訳(メタデータ) (2021-03-30T21:22:26Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。