論文の概要: KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment
- arxiv url: http://arxiv.org/abs/2405.09964v2
- Date: Tue, 08 Oct 2024 11:39:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:27:44.858931
- Title: KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment
- Title(参考訳): KPNDepth:複雑な雨環境下でのレーン画像の深さ推定
- Authors: Zhengxu Shi,
- Abstract要約: 本稿では,降雨環境下でのレーン深度推定のための新しい2層畳み込みカーネル予測ネットワークを提案する。
2組のカーネルを予測し、深さ損失と雨天のアーティファクトを緩和する。
実験は、複雑な雨条件下でのフレームワークの有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel prediction network for lane depth estimation in rainy environments. It predicts two sets of kernels to mitigate depth loss and rain streak artifacts. To address the scarcity of real rainy lane data, an image synthesis algorithm, RCFLane, is presented, creating a synthetic dataset called RainKITTI. Experiments show the framework's effectiveness in complex rainy conditions.
- Abstract(参考訳): 深層ニューラルネットワークの最近の進歩は、晴れた昼間の運転シナリオにおける深さ推定を改善した。
しかし, 既存の手法では, 深度推定を歪ませる雨害や霧が原因で, 雨害に悩まされている。
本稿では,降雨環境下でのレーン深度推定のための新しい2層畳み込みカーネル予測ネットワークを提案する。
2組のカーネルを予測し、深さ損失と雨天のアーティファクトを緩和する。
実際の降雨レーンデータの不足に対処するため、画像合成アルゴリズムRCFLaneが提示され、RainKITTIと呼ばれる合成データセットが作成される。
実験は、複雑な雨条件下でのフレームワークの有効性を示す。
関連論文リスト
- RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering [50.14860376758962]
多視点降雨画像の集合からクリーンなシーンを再構築するための教師なしフレームワークであるRainyScapeを提案する。
ニューラルネットワークのスペクトルバイアス特性に基づいて、まずニューラルネットワークのレンダリングパイプラインを最適化し、低周波シーン表現を得る。
我々は2つのモジュールを協調的に最適化し,適応的指向性勾配に基づく再構成損失によって駆動する。
論文 参考訳(メタデータ) (2024-04-17T14:07:22Z) - TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
本研究は,降雨の基盤となる物理的発生機構を十分に考慮した,新しい深層学習型降雨発生器を提案する。
その意義は、発電機が予想される雨をシミュレートするために雨の本質的な要素を精巧に設計するだけでなく、複雑で多様な雨のイメージに微妙に適応することにある。
提案した雨発生器が発生した雨は, 高品質であるだけでなく, 排水作業や下流作業にも有効であることを示す。
論文 参考訳(メタデータ) (2024-03-15T03:27:39Z) - Dual Degradation Representation for Joint Deraining and Low-Light Enhancement in the Dark [57.85378202032541]
暗闇の中での雨は、自律運転や監視システム、夜間写真など、現実世界のアプリケーションをデプロイする上で大きな課題となる。
既存の低照度化や除染法は、低照度を明るくし、同時に雨を取り除くのに苦労する。
L$2$RIRNetと呼ばれるエンド・ツー・エンドのモデルを導入する。
論文 参考訳(メタデータ) (2023-05-06T10:17:42Z) - Single Image Deraining via Rain-Steaks Aware Deep Convolutional Neural
Network [16.866000078306815]
雨天画像から高周波情報を抽出するために、改良された重み付きガイド画像フィルタ(iWGIF)を提案する。
高周波情報は主にレインステーキとノイズを含み、レインステーキが深い畳み込みニューラルネットワーク(RSADCNN)を認識してレインステーキに注意を払うように誘導することができる。
論文 参考訳(メタデータ) (2022-09-16T09:16:03Z) - Not Just Streaks: Towards Ground Truth for Single Image Deraining [42.15398478201746]
実世界の雨天とクリーンなイメージペアの大規模データセットを提案する。
本稿では,雨天と清潔な画像の間の雨害損失を最小限に抑え,基盤となるシーンを再構築するディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-06-22T00:10:06Z) - Semi-MoreGAN: A New Semi-supervised Generative Adversarial Network for
Mixture of Rain Removal [18.04268933542476]
降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水)
セミモレGANは、4つの重要なモジュールで構成されている: (I) 正確な深度推定を提供する新しい注意深度予測ネットワーク、 (ii) 詳細な画像コンテキスト特徴を生成するためによく設計された詳細残差ブロックで構成されたコンテキスト特徴予測ネットワーク、 (iii) ピラミッド深度誘導非局所ネットワークにより画像コンテキストを深度情報と有効に統合し、最終雨量のない画像を生成する、 (iv) モデルに制限を加えるための包括的な半教師付き損失関数。
論文 参考訳(メタデータ) (2022-04-28T11:35:26Z) - Single Image Deraining Network with Rain Embedding Consistency and
Layered LSTM [14.310541943673181]
本稿では,オートエンコーダのエンコード埋め込みを理想的な雨埋め込みとして,「レイン埋め込み一貫性」の概念を紹介した。
レイン・エンベディング・ロス(Rain Embedding Loss)は、法定局所コントラスト正規化(Rectified Local Contrast Normalization)をガイドとして、エンコーディングプロセスを直接監督するために適用される。
また,異なるスケールを考慮した繰り返しデラリニングおよび微細エンコーダ機能改善のための層状LSTMを提案する。
論文 参考訳(メタデータ) (2021-11-05T17:03:08Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
雨畳み込み辞書ネットワーク(RCDNet)と呼ばれる,新しい深層アーキテクチャを具体的に構築する。
RCDNetは雨害の本質的な先行を埋め込んでおり、明確な解釈性を持っている。
このような解釈可能なネットワークをエンドツーエンドにトレーニングすることにより、関連するすべてのレインカーネルと近位演算子を自動的に抽出することができる。
論文 参考訳(メタデータ) (2021-07-14T16:08:11Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
本研究は,本質的な降雨構造を有するネットワークの出力残余を強制することで,新たなネットワークアーキテクチャを提案する。
このような構造的残差設定は、ネットワークによって抽出された雨層が、一般的な雨害の以前の知識に微妙に従うことを保証している。
論文 参考訳(メタデータ) (2020-05-19T05:52:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。