ROCOv2: Radiology Objects in COntext Version 2, an Updated Multimodal Image Dataset
- URL: http://arxiv.org/abs/2405.10004v2
- Date: Tue, 18 Jun 2024 11:58:39 GMT
- Title: ROCOv2: Radiology Objects in COntext Version 2, an Updated Multimodal Image Dataset
- Authors: Johannes Rückert, Louise Bloch, Raphael Brüngel, Ahmad Idrissi-Yaghir, Henning Schäfer, Cynthia S. Schmidt, Sven Koitka, Obioma Pelka, Asma Ben Abacha, Alba G. Seco de Herrera, Henning Müller, Peter A. Horn, Felix Nensa, Christoph M. Friedrich,
- Abstract summary: This paper introduces Radiology Object in COntext version 2 (ROCOv2), a multimodal dataset consisting of radiological images and associated medical concepts and captions.
It is an updated version of the ROCO dataset published in 2018, and adds 35,705 new images added to PMC since 2018.
The dataset consists of 79,789 images and has been used, with minor modifications, in the concept detection and caption prediction tasks of ImageCLEFmedical Caption 2023.
- Score: 4.382166835379353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated medical image analysis systems often require large amounts of training data with high quality labels, which are difficult and time consuming to generate. This paper introduces Radiology Object in COntext version 2 (ROCOv2), a multimodal dataset consisting of radiological images and associated medical concepts and captions extracted from the PMC Open Access subset. It is an updated version of the ROCO dataset published in 2018, and adds 35,705 new images added to PMC since 2018. It further provides manually curated concepts for imaging modalities with additional anatomical and directional concepts for X-rays. The dataset consists of 79,789 images and has been used, with minor modifications, in the concept detection and caption prediction tasks of ImageCLEFmedical Caption 2023. The dataset is suitable for training image annotation models based on image-caption pairs, or for multi-label image classification using Unified Medical Language System (UMLS) concepts provided with each image. In addition, it can serve for pre-training of medical domain models, and evaluation of deep learning models for multi-task learning.
Related papers
- Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
We introduce the Med-ST framework for fine-grained spatial and temporal modeling.
For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views.
For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR)
arXiv Detail & Related papers (2024-05-30T03:15:09Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Freeze the backbones: A Parameter-Efficient Contrastive Approach to
Robust Medical Vision-Language Pre-training [15.790435273150083]
We introduce the backbone-agnostic Adaptor framework, which preserves medical knowledge in pre-trained image and text encoders by keeping them frozen.
Our framework delivers competitive performance while cutting trainable parameters by over 90% compared to current pre-training approaches.
arXiv Detail & Related papers (2024-01-02T12:14:41Z) - Enhancing CT Image synthesis from multi-modal MRI data based on a
multi-task neural network framework [16.864720020158906]
We propose a versatile multi-task neural network framework, based on an enhanced Transformer U-Net architecture.
We decompose the traditional problem of synthesizing CT images into distinct subtasks.
To enhance the framework's versatility in handling multi-modal data, we expand the model with multiple image channels.
arXiv Detail & Related papers (2023-12-13T18:22:38Z) - Sam-Guided Enhanced Fine-Grained Encoding with Mixed Semantic Learning
for Medical Image Captioning [12.10183458424711]
We present a novel medical image captioning method guided by the segment anything model (SAM)
Our approach employs a distinctive pre-training strategy with mixed semantic learning to simultaneously capture both the overall information and finer details within medical images.
arXiv Detail & Related papers (2023-11-02T05:44:13Z) - CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training [6.292642131180376]
In this paper, we tackle the lack of image-text data in chest X-ray by expanding image-label pair as image-text pair via general prompt.
We also design two contrastive losses, named ICL and TCL, for learning study-level characteristics of medical images and reports.
Our model outperforms the state-of-the-art models trained under the same conditions.
arXiv Detail & Related papers (2023-10-20T05:44:55Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - RAMM: Retrieval-augmented Biomedical Visual Question Answering with
Multi-modal Pre-training [45.38823400370285]
Vision-and-language multi-modal pretraining and fine-tuning have shown great success in visual question answering (VQA)
In this paper, we propose a retrieval-augmented pretrain-and-finetune paradigm named RAMM for biomedical VQA.
arXiv Detail & Related papers (2023-03-01T14:21:19Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.