Cooperative Visual-LiDAR Extrinsic Calibration Technology for Intersection Vehicle-Infrastructure: A review
- URL: http://arxiv.org/abs/2405.10132v1
- Date: Thu, 16 May 2024 14:29:56 GMT
- Title: Cooperative Visual-LiDAR Extrinsic Calibration Technology for Intersection Vehicle-Infrastructure: A review
- Authors: Xinyu Zhang, Yijin Xiong, Qianxin Qu, Renjie Wang, Xin Gao, Jing Liu, Shichun Guo, Jun Li,
- Abstract summary: In the typical urban intersection scenario, both vehicles and infrastructures are equipped with visual and LiDAR sensors.
This paper examines and analyzes the calibration of multi-end camera-LiDAR setups from vehicle, roadside, and vehicle-road cooperation perspectives.
- Score: 19.77659610529281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the typical urban intersection scenario, both vehicles and infrastructures are equipped with visual and LiDAR sensors. By successfully integrating the data from vehicle-side and road monitoring devices, a more comprehensive and accurate environmental perception and information acquisition can be achieved. The Calibration of sensors, as an essential component of autonomous driving technology, has consistently drawn significant attention. Particularly in scenarios involving multiple sensors collaboratively perceiving and addressing localization challenges, the requirement for inter-sensor calibration becomes crucial. Recent years have witnessed the emergence of the concept of multi-end cooperation, where infrastructure captures and transmits surrounding environment information to vehicles, bolstering their perception capabilities while mitigating costs. However, this also poses technical complexities, underscoring the pressing need for diverse end calibration. Camera and LiDAR, the bedrock sensors in autonomous driving, exhibit expansive applicability. This paper comprehensively examines and analyzes the calibration of multi-end camera-LiDAR setups from vehicle, roadside, and vehicle-road cooperation perspectives, outlining their relevant applications and profound significance. Concluding with a summary, we present our future-oriented ideas and hypotheses.
Related papers
- Research Challenges and Progress in the End-to-End V2X Cooperative Autonomous Driving Competition [57.698383942708]
Vehicle-to-everything (V2X) communication has emerged as a key enabler for extending perception range and enhancing driving safety.<n>We organized the End-to-End Autonomous Driving through V2X Cooperation Challenge, which features two tracks: cooperative temporal perception and cooperative end-to-end planning.<n>This paper describes the design and outcomes of the challenge, highlights key research problems including bandwidth-aware fusion, robust multi-agent planning, and heterogeneous sensor integration.
arXiv Detail & Related papers (2025-07-29T09:06:40Z) - VALISENS: A Validated Innovative Multi-Sensor System for Cooperative Automated Driving [0.9527960631238174]
This paper presents VALISENS, an innovative multi-sensor system distributed across multiple agents.<n>It integrates onboard and roadside LiDARs, radars, thermal cameras, and RGB cameras to enhance situational awareness and support cooperative automated driving.<n>The proposed system demonstrates the potential of cooperative perception in real-world test environments.
arXiv Detail & Related papers (2025-05-11T13:41:37Z) - Towards Intelligent Transportation with Pedestrians and Vehicles In-the-Loop: A Surveillance Video-Assisted Federated Digital Twin Framework [62.47416496137193]
We propose a surveillance video assisted federated digital twin (SV-FDT) framework to empower ITSs with pedestrians and vehicles in-the-loop.
The architecture consists of three layers: (i) the end layer, which collects traffic surveillance videos from multiple sources; (ii) the edge layer, responsible for semantic segmentation-based visual understanding, twin agent-based interaction modeling, and local digital twin system (LDTS) creation in local regions; and (iii) the cloud layer, which integrates LDTSs across different regions to construct a global DT model in realtime.
arXiv Detail & Related papers (2025-03-06T07:36:06Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - SKoPe3D: A Synthetic Dataset for Vehicle Keypoint Perception in 3D from
Traffic Monitoring Cameras [26.457695296042903]
We propose SKoPe3D, a unique synthetic vehicle keypoint dataset from a roadside perspective.
SKoPe3D contains over 150k vehicle instances and 4.9 million keypoints.
Our experiments highlight the dataset's applicability and the potential for knowledge transfer between synthetic and real-world data.
arXiv Detail & Related papers (2023-09-04T02:57:30Z) - Smart Infrastructure: A Research Junction [5.172393727004225]
We introduce an intelligent research infrastructure equipped with visual sensor technology, located at a public inner-city junction in Aschaffenburg, Germany.
A multiple-view camera system monitors the traffic situation to perceive road users' behavior.
The system is used for research in data generation, evaluating new HAD sensors systems, algorithms, and Artificial Intelligence (AI) training strategies.
arXiv Detail & Related papers (2023-07-12T14:04:12Z) - The IMPTC Dataset: An Infrastructural Multi-Person Trajectory and
Context Dataset [4.413278371057897]
Inner-city intersections are among the most critical traffic areas for injury and fatal accidents.
We use an intelligent public inner-city intersection in Germany with visual sensor technology.
The resulting dataset consists of eight hours of measurement data.
arXiv Detail & Related papers (2023-07-12T13:46:20Z) - Automated Static Camera Calibration with Intelligent Vehicles [58.908194559319405]
We present a robust calibration method for automated geo-referenced camera calibration.
Our method requires a calibration vehicle equipped with a combined filtering/RTK receiver and an inertial measurement unit (IMU) for self-localization.
Our method does not require any human interaction with the information recorded by both the infrastructure and the vehicle.
arXiv Detail & Related papers (2023-04-21T08:50:52Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - Extrinsic Camera Calibration with Semantic Segmentation [60.330549990863624]
We present an extrinsic camera calibration approach that automatizes the parameter estimation by utilizing semantic segmentation information.
Our approach relies on a coarse initial measurement of the camera pose and builds on lidar sensors mounted on a vehicle.
We evaluate our method on simulated and real-world data to demonstrate low error measurements in the calibration results.
arXiv Detail & Related papers (2022-08-08T07:25:03Z) - Robust Perception Architecture Design for Automotive Cyber-Physical
Systems [4.226118870861363]
PASTA is a framework for global co-optimization of deep learning and sensing for dependable vehicle perception.
We show how PASTA can find robust, vehicle-specific perception architecture solutions.
arXiv Detail & Related papers (2022-05-17T03:02:07Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - LIBRE: The Multiple 3D LiDAR Dataset [54.25307983677663]
We present LIBRE: LiDAR Benchmarking and Reference, a first-of-its-kind dataset featuring 10 different LiDAR sensors.
LIBRE will contribute to the research community to provide a means for a fair comparison of currently available LiDARs.
It will also facilitate the improvement of existing self-driving vehicles and robotics-related software.
arXiv Detail & Related papers (2020-03-13T06:17:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.