VALISENS: A Validated Innovative Multi-Sensor System for Cooperative Automated Driving
- URL: http://arxiv.org/abs/2505.06980v1
- Date: Sun, 11 May 2025 13:41:37 GMT
- Title: VALISENS: A Validated Innovative Multi-Sensor System for Cooperative Automated Driving
- Authors: Lei Wan, Prabesh Gupta, Andreas Eich, Marcel Kettelgerdes, Hannan Ejaz Keen, Michael Klöppel-Gersdorf, Alexey Vinel,
- Abstract summary: This paper presents VALISENS, an innovative multi-sensor system distributed across multiple agents.<n>It integrates onboard and roadside LiDARs, radars, thermal cameras, and RGB cameras to enhance situational awareness and support cooperative automated driving.<n>The proposed system demonstrates the potential of cooperative perception in real-world test environments.
- Score: 0.9527960631238174
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Perception is a core capability of automated vehicles and has been significantly advanced through modern sensor technologies and artificial intelligence. However, perception systems still face challenges in complex real-world scenarios. To improve robustness against various external factors, multi-sensor fusion techniques are essential, combining the strengths of different sensor modalities. With recent developments in Vehicle-to-Everything (V2X communication, sensor fusion can now extend beyond a single vehicle to a cooperative multi-agent system involving Connected Automated Vehicle (CAV) and intelligent infrastructure. This paper presents VALISENS, an innovative multi-sensor system distributed across multiple agents. It integrates onboard and roadside LiDARs, radars, thermal cameras, and RGB cameras to enhance situational awareness and support cooperative automated driving. The thermal camera adds critical redundancy for perceiving Vulnerable Road User (VRU), while fusion with roadside sensors mitigates visual occlusions and extends the perception range beyond the limits of individual vehicles. We introduce the corresponding perception module built on this sensor system, which includes object detection, tracking, motion forecasting, and high-level data fusion. The proposed system demonstrates the potential of cooperative perception in real-world test environments and lays the groundwork for future Cooperative Intelligent Transport Systems (C-ITS) applications.
Related papers
- Research Challenges and Progress in the End-to-End V2X Cooperative Autonomous Driving Competition [57.698383942708]
Vehicle-to-everything (V2X) communication has emerged as a key enabler for extending perception range and enhancing driving safety.<n>We organized the End-to-End Autonomous Driving through V2X Cooperation Challenge, which features two tracks: cooperative temporal perception and cooperative end-to-end planning.<n>This paper describes the design and outcomes of the challenge, highlights key research problems including bandwidth-aware fusion, robust multi-agent planning, and heterogeneous sensor integration.
arXiv Detail & Related papers (2025-07-29T09:06:40Z) - Integrating Multi-Modal Sensors: A Review of Fusion Techniques for Intelligent Vehicles [11.412978676426205]
Multi-sensor fusion plays a critical role in enhancing perception for autonomous driving.<n>This paper formalizes multi-sensor fusion strategies into data-level, feature-level, and decision-level categories.<n>We present key multi-modal datasets and discuss their applicability in addressing real-world challenges.
arXiv Detail & Related papers (2025-06-27T03:43:48Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - Cooperative Visual-LiDAR Extrinsic Calibration Technology for Intersection Vehicle-Infrastructure: A review [19.77659610529281]
In the typical urban intersection scenario, both vehicles and infrastructures are equipped with visual and LiDAR sensors.
This paper examines and analyzes the calibration of multi-end camera-LiDAR setups from vehicle, roadside, and vehicle-road cooperation perspectives.
arXiv Detail & Related papers (2024-05-16T14:29:56Z) - Enhancing Track Management Systems with Vehicle-To-Vehicle Enabled Sensor Fusion [0.0]
This paper proposes a novel Vehicle-to-Vehicle (V2V) enabled track management system.
The core innovation lies in the creation of independent priority track lists, consisting of fused detections validated through V2V communication.
The proposed system considers the implications of falsification of V2X signals which is combated through an initial vehicle identification process using detection from perception sensors.
arXiv Detail & Related papers (2024-04-26T20:54:44Z) - Smart Infrastructure: A Research Junction [5.172393727004225]
We introduce an intelligent research infrastructure equipped with visual sensor technology, located at a public inner-city junction in Aschaffenburg, Germany.
A multiple-view camera system monitors the traffic situation to perceive road users' behavior.
The system is used for research in data generation, evaluating new HAD sensors systems, algorithms, and Artificial Intelligence (AI) training strategies.
arXiv Detail & Related papers (2023-07-12T14:04:12Z) - RMMDet: Road-Side Multitype and Multigroup Sensor Detection System for
Autonomous Driving [3.8917150802484994]
RMMDet is a road-side multitype and multigroup sensor detection system for autonomous driving.
We use a ROS-based virtual environment to simulate real-world conditions.
We produce local datasets and real sand table field, and conduct various experiments.
arXiv Detail & Related papers (2023-03-09T12:13:39Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians.
Our method efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin.
Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages.
arXiv Detail & Related papers (2022-12-15T11:15:14Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
It is of primary importance that the resulting decisions are robust to perturbations.
Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements.
A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems.
arXiv Detail & Related papers (2020-07-14T05:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.