Geometric phase amplification in a clock interferometer for enhanced metrology
- URL: http://arxiv.org/abs/2405.10226v1
- Date: Thu, 16 May 2024 16:24:36 GMT
- Title: Geometric phase amplification in a clock interferometer for enhanced metrology
- Authors: Zhifan Zhou, Sebastian C. Carrasco, Christian Sanner, Vladimir S. Malinovsky, Ron Folman,
- Abstract summary: A clock interferometer provides metrological improvement with respect to its technical-noise-limited counterpart employing a single internal quantum state.
We infer a precision enhancement of 8.8 decibels when measuring a small difference between external fields.
We estimate that tens of decibels of precision enhancement could be attained for measurements with a higher atom flux.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-precision measurements are crucial for testing the fundamental laws of nature and for advancing the technological frontier. Clock interferometry, where particles with an internal clock are coherently split and recombined along two spatial paths, has sparked significant interest due to its fundamental implications, especially at the intersection of quantum mechanics and general relativity. Here, we demonstrate that a clock interferometer provides metrological improvement with respect to its technical-noise-limited counterpart employing a single internal quantum state. This enhancement around a critical working point can be interpreted as a geometric-phase-induced signal-to-noise ratio gain. In our experimental setup, we infer a precision enhancement of 8.8 decibels when measuring a small difference between external fields. We estimate that tens of decibels of precision enhancement could be attained for measurements with a higher atom flux. This opens the door to the development of a superior probe for fundamental physics as well as a high-performance sensor for various technological applications.
Related papers
- Atom interferometer as a freely falling clock for time-dilation
measurements [0.14188748936919127]
Light-pulse atom interferometers based on single-photon transitions are a promising tool for gravitational-wave detection in the mid-frequency band.
We present a novel measurement scheme that enables their use as freely falling clocks directly measuring relativistic time-dilation effects.
arXiv Detail & Related papers (2024-02-16T20:38:03Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Optimal baseline exploitation in vertical dark-matter detectors based on
atom interferometry [50.06952271801328]
Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction.
We show that resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline.
arXiv Detail & Related papers (2023-09-08T08:38:24Z) - Atomic interferometer based on optical tweezers [0.0]
We propose and analyze a novel atomic interferometer that uses micro-optical traps (optical tweezers) to manipulate and control the motion of atoms.
The new interferometer allows long probing time, sub micrometer positioning accuracy, and utmost flexibility in shaping of the atomic trajectory.
We discuss two applications well-suited for the unique capabilities of the tweezer interferometer: the measurement of gravitational forces and the study of Casimir-Polder forces between atoms and surfaces.
arXiv Detail & Related papers (2023-08-15T13:42:57Z) - How to harness high-dimensional temporal entanglement, using limited
interferometry setups [62.997667081978825]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Principles of tractor atom interferometry [0.0]
We present possible design concepts for a tractor atom interferometer (TAI) based on three-dimensional confinement and transport of ultracold atoms.
The design allows for further advancement of compact, high-sensitivity, quantum sensing technology.
arXiv Detail & Related papers (2022-07-19T02:02:02Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Tailoring multi-loop atom interferometers with adjustable momentum
transfer [0.0]
Multi-loop matter-wave interferometers are essential in quantum sensing to measure the derivatives of physical quantities in time or space.
imperfections of the matter-wave mirrors create spurious paths that scramble the signal of interest.
Here we demonstrate a method of adjustable momentum transfer that prevents the recombination of the spurious paths in a double-loop atom interferometer aimed at measuring rotation rates.
arXiv Detail & Related papers (2020-06-15T12:46:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.