Influencer Cartels
- URL: http://arxiv.org/abs/2405.10231v2
- Date: Sun, 10 Nov 2024 17:00:52 GMT
- Title: Influencer Cartels
- Authors: Marit Hinnosaar, Toomas Hinnosaar,
- Abstract summary: Group of influencers collude to increase their advertising revenue by inflating their engagement.
Our theoretical model shows that influencer cartels can improve consumer welfare if they expand social media engagement to the target audience.
We empirically examine influencer cartels using novel datasets and machine learning tools, and derive policy implications.
- Score: 0.0
- License:
- Abstract: Social media influencers account for a growing share of marketing worldwide. We demonstrate the existence of a novel form of market failure in this advertising market: influencer cartels, where groups of influencers collude to increase their advertising revenue by inflating their engagement. Our theoretical model shows that influencer cartels can improve consumer welfare if they expand social media engagement to the target audience, or reduce welfare if they divert engagement to less relevant audiences. Drawing on the model's insights, we empirically examine influencer cartels using novel datasets and machine learning tools, and derive policy implications.
Related papers
- On the Use of Proxies in Political Ad Targeting [49.61009579554272]
We show that major political advertisers circumvented mitigations by targeting proxy attributes.
Our findings have crucial implications for the ongoing discussion on the regulation of political advertising.
arXiv Detail & Related papers (2024-10-18T17:15:13Z) - Social Convos: Capturing Agendas and Emotions on Social Media [1.6385815610837167]
We present a novel approach to extract influence indicators from messages circulating among groups of users discussing particular topics.
We focus on two influence indicators: the (control of) agenda and the use of emotional language.
arXiv Detail & Related papers (2024-02-23T19:14:09Z) - A Multimodal Analysis of Influencer Content on Twitter [40.41635575764701]
Line between personal opinions and commercial content promotion is frequently blurred.
This makes automatic detection of regulatory compliance breaches related to influencer advertising difficult.
We introduce a new Twitter (now X) dataset consisting of 15,998 influencer posts mapped into commercial and non-commercial categories.
arXiv Detail & Related papers (2023-09-06T15:07:23Z) - InfluencerRank: Discovering Effective Influencers via Graph
Convolutional Attentive Recurrent Neural Networks [15.461845673443804]
We propose InfluencerRank that ranks influencers by their effectiveness based on their posting behaviors and social relations over time.
Experiments have been conducted on an Instagram dataset that consists of 18,397 influencers with their 2,952,075 posts published within 12 months.
arXiv Detail & Related papers (2023-04-04T15:48:08Z) - What Drives Virtual Influencer's Impact? [0.0]
This work examines how including someone else in photos shapes consumer responses to virtual influencers' posts.
A multimethod investigation combines automated image and text analysis of thousands of social media posts.
Companion presence makes virtual influencers seem more human, which makes them seem more trustworthy.
arXiv Detail & Related papers (2023-01-24T09:22:41Z) - Persuasion Strategies in Advertisements [68.70313043201882]
We introduce an extensive vocabulary of persuasion strategies and build the first ad image corpus annotated with persuasion strategies.
We then formulate the task of persuasion strategy prediction with multi-modal learning.
We conduct a real-world case study on 1600 advertising campaigns of 30 Fortune-500 companies.
arXiv Detail & Related papers (2022-08-20T07:33:13Z) - Personality-Driven Social Multimedia Content Recommendation [68.46899477180837]
We investigate the impact of human personality traits on the content recommendation model by applying a novel personality-driven multi-view content recommender system.
Our experimental results and real-world case study demonstrate not just PersiC's ability to perform efficient human personality-driven multi-view content recommendation, but also allow for actionable digital ad strategy recommendations.
arXiv Detail & Related papers (2022-07-25T14:37:18Z) - Ranking Micro-Influencers: a Novel Multi-Task Learning and Interpretable
Framework [69.5850969606885]
We propose a novel multi-task learning framework to improve the state of the art in micro-influencer ranking based on multimedia content.
We show significant improvement both in terms of accuracy and model complexity.
The techniques for ranking and interpretation presented in this work can be generalised to arbitrary multimedia ranking tasks.
arXiv Detail & Related papers (2021-07-29T13:04:25Z) - Modeling Influencer Marketing Campaigns In Social Networks [2.0303656145222857]
More than 3.8 billion people around the world actively use social media.
In this work, we present an agent-based model (ABM) that can simulate the dynamics of influencer advertizing campaigns.
arXiv Detail & Related papers (2021-06-03T11:01:06Z) - Do Interruptions Pay Off? Effects of Interruptive Ads on Consumers
Willingness to Pay [79.9312329825761]
We present the results of a study designed to measure the impact of interruptive advertising on consumers willingness to pay for products bearing the advertiser's brand.
Our results contribute to the research on the economic impact of advertising, and introduce a method of measuring actual (as opposed to self-reported) willingness to pay in experimental marketing research.
arXiv Detail & Related papers (2020-05-14T09:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.