A Foundation Model for Brain Lesion Segmentation with Mixture of Modality Experts
- URL: http://arxiv.org/abs/2405.10246v2
- Date: Tue, 16 Jul 2024 07:59:11 GMT
- Title: A Foundation Model for Brain Lesion Segmentation with Mixture of Modality Experts
- Authors: Xinru Zhang, Ni Ou, Berke Doga Basaran, Marco Visentin, Mengyun Qiao, Renyang Gu, Cheng Ouyang, Yaou Liu, Paul M. Matthew, Chuyang Ye, Wenjia Bai,
- Abstract summary: We propose a universal foundation model for 3D brain lesion segmentation.
We formulate a novel Mixture of Modality Experts (MoME) framework with multiple expert networks attending to different imaging modalities.
Our model outperforms state-of-the-art universal models and provides promising generalization to unseen datasets.
- Score: 3.208907282505264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain lesion segmentation plays an essential role in neurological research and diagnosis. As brain lesions can be caused by various pathological alterations, different types of brain lesions tend to manifest with different characteristics on different imaging modalities. Due to this complexity, brain lesion segmentation methods are often developed in a task-specific manner. A specific segmentation model is developed for a particular lesion type and imaging modality. However, the use of task-specific models requires predetermination of the lesion type and imaging modality, which complicates their deployment in real-world scenarios. In this work, we propose a universal foundation model for 3D brain lesion segmentation, which can automatically segment different types of brain lesions for input data of various imaging modalities. We formulate a novel Mixture of Modality Experts (MoME) framework with multiple expert networks attending to different imaging modalities. A hierarchical gating network combines the expert predictions and fosters expertise collaboration. Furthermore, we introduce a curriculum learning strategy during training to avoid the degeneration of each expert network and preserve their specialization. We evaluated the proposed method on nine brain lesion datasets, encompassing five imaging modalities and eight lesion types. The results show that our model outperforms state-of-the-art universal models and provides promising generalization to unseen datasets.
Related papers
- KA$^2$ER: Knowledge Adaptive Amalgamation of ExpeRts for Medical Images Segmentation [5.807887214293438]
We propose an adaptive amalgamation knowledge framework that aims to train a versatile foundation model to handle the joint goals of multiple expert models.
In particular, we first train an nnUNet-based expert model for each task, and reuse the pre-trained SwinUNTER as the target foundation model.
Within the hidden layer, the hierarchical attention mechanisms are designed to achieve adaptive merging of the target model to the hidden layer feature knowledge of all experts.
arXiv Detail & Related papers (2024-10-28T14:49:17Z) - Feasibility and benefits of joint learning from MRI databases with different brain diseases and modalities for segmentation [2.7575121770012503]
We show that joint training on multi-modal MRI databases with different brain pathologies and sets of modalities is feasible and offers practical benefits.
It enables a single model to segment pathologies encountered during training in diverse sets of modalities.
arXiv Detail & Related papers (2024-05-28T18:28:10Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
Reconstructing the viewed images from human brain activity bridges human and computer vision through the Brain-Computer Interface.
We devise Psychometry, an omnifit model for reconstructing images from functional Magnetic Resonance Imaging (fMRI) obtained from different subjects.
arXiv Detail & Related papers (2024-03-29T07:16:34Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Modality-Aware and Shift Mixer for Multi-modal Brain Tumor Segmentation [12.094890186803958]
We present a novel Modality Aware and Shift Mixer that integrates intra-modality and inter-modality dependencies of multi-modal images for effective and robust brain tumor segmentation.
Specifically, we introduce a Modality-Aware module according to neuroimaging studies for modeling the specific modality pair relationships at low levels, and a Modality-Shift module with specific mosaic patterns is developed to explore the complex relationships across modalities at high levels via the self-attention.
arXiv Detail & Related papers (2024-03-04T14:21:51Z) - Brain-ID: Learning Contrast-agnostic Anatomical Representations for
Brain Imaging [11.06907516321673]
We introduce Brain-ID, an anatomical representation learning model for brain imaging.
With the proposed "mild-to-severe" intrasubject generation, Brain-ID is robust to the subject-specific brain anatomy.
We present new metrics to validate the intra- and inter-subject robustness, and evaluate their performance on four downstream applications.
arXiv Detail & Related papers (2023-11-28T16:16:10Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Learning joint segmentation of tissues and brain lesions from
task-specific hetero-modal domain-shifted datasets [6.049813979681482]
We propose a novel approach to build a joint tissue and lesion segmentation model from aggregated task-specific datasets.
We show how the expected risk can be decomposed and optimised empirically.
For each individual task, our joint approach reaches comparable performance to task-specific and fully-supervised models.
arXiv Detail & Related papers (2020-09-08T22:00:00Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.