AMCEN: An Attention Masking-based Contrastive Event Network for Two-stage Temporal Knowledge Graph Reasoning
- URL: http://arxiv.org/abs/2405.10346v1
- Date: Thu, 16 May 2024 01:39:50 GMT
- Title: AMCEN: An Attention Masking-based Contrastive Event Network for Two-stage Temporal Knowledge Graph Reasoning
- Authors: Jing Yang, Xiao Wang, Yutong Wang, Jiawei Wang, Fei-Yue Wang,
- Abstract summary: Temporal knowledge graphs (TKGs) can effectively model the ever-evolving nature of real-world knowledge, and their completeness and enhancement can be achieved by reasoning new events from existing ones.
However, reasoning accuracy is adversely impacted due to an imbalance between new and recurring events in the datasets.
We propose an attention masking-based contrastive event network (AMCEN) with local-global temporal patterns for the two-stage prediction of future events.
- Score: 29.68279984719722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal knowledge graphs (TKGs) can effectively model the ever-evolving nature of real-world knowledge, and their completeness and enhancement can be achieved by reasoning new events from existing ones. However, reasoning accuracy is adversely impacted due to an imbalance between new and recurring events in the datasets. To achieve more accurate TKG reasoning, we propose an attention masking-based contrastive event network (AMCEN) with local-global temporal patterns for the two-stage prediction of future events. In the network, historical and non-historical attention mask vectors are designed to control the attention bias towards historical and non-historical entities, acting as the key to alleviating the imbalance. A local-global message-passing module is proposed to comprehensively consider and capture multi-hop structural dependencies and local-global temporal evolution for the in-depth exploration of latent impact factors of different event types. A contrastive event classifier is used to classify events more accurately by incorporating local-global temporal patterns into contrastive learning. Therefore, AMCEN refines the prediction scope with the results of the contrastive event classification, followed by utilizing attention masking-based decoders to finalize the specific outcomes. The results of our experiments on four benchmark datasets highlight the superiority of AMCEN. Especially, the considerable improvements in Hits@1 prove that AMCEN can make more precise predictions about future occurrences.
Related papers
- MAVEN-Fact: A Large-scale Event Factuality Detection Dataset [55.01875707021496]
We introduce MAVEN-Fact, a large-scale and high-quality EFD dataset based on the MAVEN dataset.
MAVEN-Fact includes factuality annotations of 112,276 events, making it the largest EFD dataset.
Experiments demonstrate that MAVEN-Fact is challenging for both conventional fine-tuned models and large language models (LLMs)
arXiv Detail & Related papers (2024-07-22T03:43:46Z) - HIP Network: Historical Information Passing Network for Extrapolation
Reasoning on Temporal Knowledge Graph [14.832067253514213]
We propose the Historical Information Passing (HIP) network to predict future events.
Our method considers the updating of relation representations and adopts three scoring functions corresponding to the above dimensions.
Experimental results on five benchmark datasets show the superiority of HIP network.
arXiv Detail & Related papers (2024-02-19T11:50:30Z) - Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection [64.4350027428928]
We propose a novel uncertainty-guided class imbalance learning framework for imbalanced social event detection tasks.
Our model significantly improves social event representation and classification tasks in almost all classes, especially those uncertain ones.
arXiv Detail & Related papers (2023-10-30T03:32:04Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
We propose a new event forecasting model based on a novel training framework of historical contrastive learning.
CENET learns both the historical and non-historical dependency to distinguish the most potential entities.
We evaluate our proposed model on five benchmark graphs.
arXiv Detail & Related papers (2023-08-29T03:26:38Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Logic and Commonsense-Guided Temporal Knowledge Graph Completion [9.868206060374991]
A temporal knowledge graph (TKG) stores the events derived from the data involving time.
We propose a Logic and Commonsense-Guided Embedding model (LCGE) to jointly learn the time-sensitive representation involving timeliness and causality of events.
arXiv Detail & Related papers (2022-11-30T10:06:55Z) - Temporal Knowledge Graph Reasoning with Historical Contrastive Learning [24.492458924487863]
We propose a new event forecasting model called Contrastive Event Network (CENET)
CENET learns both the historical and non-historical dependency to distinguish the most potential entities that can best match the given query.
During the inference process, CENET employs a mask-based strategy to generate the final results.
arXiv Detail & Related papers (2022-11-20T08:32:59Z) - An Ordinal Latent Variable Model of Conflict Intensity [59.49424978353101]
The Goldstein scale is a widely-used expert-based measure that scores events on a conflictual-cooperative scale.
This paper takes a latent variable-based approach to measuring conflict intensity.
arXiv Detail & Related papers (2022-10-08T08:59:17Z) - Semi-supervised New Event Type Induction and Description via Contrastive
Loss-Enforced Batch Attention [56.46649994444616]
We present a novel approach to semi-supervised new event type induction using a masked contrastive loss.
We extend our approach to two new tasks: predicting the type name of the discovered clusters and linking them to FrameNet frames.
arXiv Detail & Related papers (2022-02-12T00:32:22Z) - Multi-axis Attentive Prediction for Sparse EventData: An Application to
Crime Prediction [16.654369376687296]
We present a purely attentional approach to extract both short-term dynamics and long-term semantics of event propagation through two observation angles.
The proposed contrastive learning objective significantly enhances the MAPSED's ability to capture semantics and dynamics of events.
arXiv Detail & Related papers (2021-10-05T02:38:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.