Multi-axis Attentive Prediction for Sparse EventData: An Application to
Crime Prediction
- URL: http://arxiv.org/abs/2110.01794v1
- Date: Tue, 5 Oct 2021 02:38:46 GMT
- Title: Multi-axis Attentive Prediction for Sparse EventData: An Application to
Crime Prediction
- Authors: Yi Sui, Ga Wu, Scott Sanner
- Abstract summary: We present a purely attentional approach to extract both short-term dynamics and long-term semantics of event propagation through two observation angles.
The proposed contrastive learning objective significantly enhances the MAPSED's ability to capture semantics and dynamics of events.
- Score: 16.654369376687296
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spatiotemporal prediction of event data is a challenging task with a long
history of research. While recent work in spatiotemporal prediction has
leveraged deep sequential models that substantially improve over classical
approaches, these models are prone to overfitting when the observation is
extremely sparse, as in the task of crime event prediction. To overcome these
sparsity issues, we present Multi-axis Attentive Prediction for Sparse Event
Data (MAPSED). We propose a purely attentional approach to extract both
short-term dynamics and long-term semantics of event propagation through two
observation angles. Unlike existing temporal prediction models that propagate
latent information primarily along the temporal dimension, the MAPSED
simultaneously operates over all axes (time, 2D space, event type) of the
embedded data tensor. We additionally introduce a novel Frobenius norm-based
contrastive learning objective to improve latent representational
generalization.Empirically, we validate MAPSED on two publicly accessible urban
crime datasets for spatiotemporal sparse event prediction, where MAPSED
outperforms both classical and state-of-the-art deep learning models. The
proposed contrastive learning objective significantly enhances the MAPSED's
ability to capture the semantics and dynamics of the events, resulting in
better generalization ability to combat sparse observations.
Related papers
- STEMO: Early Spatio-temporal Forecasting with Multi-Objective Reinforcement Learning [11.324029387605888]
We propose an early-temporal forecasting model based on Multi-Objective reinforcement learning.
Our method demonstrates superior performance on three large-scale real-world datasets.
arXiv Detail & Related papers (2024-06-06T13:03:51Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Non-Autoregressive Diffusion-based Temporal Point Processes for
Continuous-Time Long-Term Event Prediction [8.88485011274486]
We propose a diffusion-based non-autoregressive temporal point process model for long-term event prediction in continuous time.
In order to perform diffusion processes on event sequences, we develop a bidirectional map between target event sequences and the Euclidean vector space.
Experiments are conducted to prove the superiority of our proposed model over state-of-the-art methods on long-term event prediction in continuous time.
arXiv Detail & Related papers (2023-11-02T06:52:44Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - AA-Forecast: Anomaly-Aware Forecast for Extreme Events [25.89754218631525]
Time series models often deal with extreme events and anomalies, both prevalent in real-world datasets.
We propose an anomaly-aware forecast framework that leverages the previously seen effects of anomalies to improve its prediction accuracy.
Specifically, the framework automatically extracts anomalies and incorporates them through an attention mechanism to increase its accuracy for future extreme events.
arXiv Detail & Related papers (2022-08-21T17:51:46Z) - Building Autocorrelation-Aware Representations for Fine-Scale
Spatiotemporal Prediction [1.2862507359003323]
We present a novel deep learning architecture that incorporates theories of spatial statistics into neural networks.
DeepLATTE contains an autocorrelation-guided semi-supervised learning strategy to enforce both local autocorrelation patterns and global autocorrelation trends.
We conduct a demonstration of DeepLATTE using publicly available data for an important public health topic, air quality prediction in a well-fitting, complex physical environment.
arXiv Detail & Related papers (2021-12-10T03:21:19Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend.
We propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation.
arXiv Detail & Related papers (2020-11-23T05:42:20Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
We focus on a tensor-based prediction and propose several practical techniques to improve prediction.
For long-term prediction specifically, we propose the "Tensor Decomposition + 2-Dimensional Auto-Regressive Moving Average (2D-ARMA)" model.
For short-term prediction, we propose to conduct tensor completion based on tensor clustering to avoid oversimplifying and ensure accuracy.
arXiv Detail & Related papers (2020-04-23T08:30:00Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.