Physics-Informed Heterogeneous Graph Neural Networks for DC Blocker Placement
- URL: http://arxiv.org/abs/2405.10389v1
- Date: Thu, 16 May 2024 18:33:35 GMT
- Title: Physics-Informed Heterogeneous Graph Neural Networks for DC Blocker Placement
- Authors: Hongwei Jin, Prasanna Balaprakash, Allen Zou, Pieter Ghysels, Aditi S. Krishnapriyan, Adam Mate, Arthur Barnes, Russell Bent,
- Abstract summary: We develop a physics-informed heterogeneous graph neural network (PIHGNN) for solving the graph-based dc-blocker placement problem.
Our approach combines a heterogeneous graph neural network (HGNN) with a physics-informed neural network (PINN) to capture the diverse types of nodes and edges in ac/dc networks and incorporates the physical laws of the power grid.
- Score: 7.404135200545133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The threat of geomagnetic disturbances (GMDs) to the reliable operation of the bulk energy system has spurred the development of effective strategies for mitigating their impacts. One such approach involves placing transformer neutral blocking devices, which interrupt the path of geomagnetically induced currents (GICs) to limit their impact. The high cost of these devices and the sparsity of transformers that experience high GICs during GMD events, however, calls for a sparse placement strategy that involves high computational cost. To address this challenge, we developed a physics-informed heterogeneous graph neural network (PIHGNN) for solving the graph-based dc-blocker placement problem. Our approach combines a heterogeneous graph neural network (HGNN) with a physics-informed neural network (PINN) to capture the diverse types of nodes and edges in ac/dc networks and incorporates the physical laws of the power grid. We train the PIHGNN model using a surrogate power flow model and validate it using case studies. Results demonstrate that PIHGNN can effectively and efficiently support the deployment of GIC dc-current blockers, ensuring the continued supply of electricity to meet societal demands. Our approach has the potential to contribute to the development of more reliable and resilient power grids capable of withstanding the growing threat that GMDs pose.
Related papers
- SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
We present SafePowerGraph, the first simulator-agnostic, safety-oriented framework and benchmark for Graph Neural Networks (GNNs) in power systems (PS) operations.
SafePowerGraph integrates multiple PF and OPF simulators and assesses GNN performance under diverse scenarios, including energy price variations and power line outages.
arXiv Detail & Related papers (2024-07-17T09:01:38Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - Data-Driven Approach to form Energy Resilient Smart Microgrids with
Identification of Vulnerable Nodes in Active Electrical Distribution Network [0.0]
We propose a methodology for the optimal allocation of DERs with vulnerable node identification in electrical distribution networks.
We partitioned the distribution system into optimal microgrids using graph theory and graph neural network (GNN) architecture.
The placement of DERs on the vulnerable nodes enhanced network reliability and resilience.
arXiv Detail & Related papers (2022-08-24T17:39:36Z) - Web-Based Platform for Evaluation of Resilient and Transactive
Smart-Grids [0.0]
Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques.
We present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks.
arXiv Detail & Related papers (2022-06-11T15:34:33Z) - Toward Dynamic Stability Assessment of Power Grid Topologies using Graph
Neural Networks [0.0]
Renewables introduce new challenges to power grids regarding the dynamic stability due to decentralization, reduced inertia, and volatility in production.
graph neural networks (GNNs) are a promising method to reduce the computational effort of analyzing the dynamic stability of power grids.
GNNs are surprisingly effective at predicting the highly non-linear targets from topological information only.
arXiv Detail & Related papers (2022-06-10T07:23:22Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
We propose a Transformer-based Multi-Agent Actor-Critic framework (T-MAAC) to stabilize voltage in power distribution networks.
In addition, we adopt a novel auxiliary-task training process tailored to the voltage control task, which improves the sample efficiency.
arXiv Detail & Related papers (2022-06-08T07:48:42Z) - Adversarially Robust Learning for Security-Constrained Optimal Power
Flow [55.816266355623085]
We tackle the problem of N-k security-constrained optimal power flow (SCOPF)
N-k SCOPF is a core problem for the operation of electrical grids.
Inspired by methods in adversarially robust training, we frame N-k SCOPF as a minimax optimization problem.
arXiv Detail & Related papers (2021-11-12T22:08:10Z) - The Nuts and Bolts of Adopting Transformer in GANs [124.30856952272913]
We investigate the properties of Transformer in the generative adversarial network (GAN) framework for high-fidelity image synthesis.
Our study leads to a new alternative design of Transformers in GAN, a convolutional neural network (CNN)-free generator termed as STrans-G.
arXiv Detail & Related papers (2021-10-25T17:01:29Z) - Power to the Relational Inductive Bias: Graph Neural Networks in
Electrical Power Grids [1.732048244723033]
We argue that there is a gap between GNN research driven by benchmarks which contain graphs that differ from power grids in several important aspects.
We address this gap by means of (i) defining power grid graph datasets in inductive settings, (ii) an exploratory analysis of graph properties, and (iii) an empirical study of the concrete learning task of state estimation on real-world power grids.
arXiv Detail & Related papers (2021-09-08T12:56:00Z) - Physics-Informed Graphical Neural Network for Parameter & State
Estimations in Power Systems [4.416484585765027]
We present a hybrid scheme which embeds physics modeling of power systems into Graphical Neural Networks (GNN)
We build a physics-informed method, named Power-GNN, which reconstructs physical, thus interpretable, parameters within Effective Power Flow (EPF) models.
In our experiments, we test the Power-GNN on different realistic power networks, including these with thousands of loads and hundreds of generators.
arXiv Detail & Related papers (2021-02-12T04:32:50Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.