Physics-Informed Graphical Neural Network for Parameter & State
Estimations in Power Systems
- URL: http://arxiv.org/abs/2102.06349v1
- Date: Fri, 12 Feb 2021 04:32:50 GMT
- Title: Physics-Informed Graphical Neural Network for Parameter & State
Estimations in Power Systems
- Authors: Laurent Pagnier and Michael Chertkov
- Abstract summary: We present a hybrid scheme which embeds physics modeling of power systems into Graphical Neural Networks (GNN)
We build a physics-informed method, named Power-GNN, which reconstructs physical, thus interpretable, parameters within Effective Power Flow (EPF) models.
In our experiments, we test the Power-GNN on different realistic power networks, including these with thousands of loads and hundreds of generators.
- Score: 4.416484585765027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter Estimation (PE) and State Estimation (SE) are the most wide-spread
tasks in the system engineering. They need to be done automatically, fast and
frequently, as measurements arrive. Deep Learning (DL) holds the promise of
tackling the challenge, however in so far, as PE and SE in power systems is
concerned, (a) DL did not win trust of the system operators because of the lack
of the physics of electricity based, interpretations and (b) DL remained
illusive in the operational regimes were data is scarce. To address this, we
present a hybrid scheme which embeds physics modeling of power systems into
Graphical Neural Networks (GNN), therefore empowering system operators with a
reliable and explainable real-time predictions which can then be used to
control the critical infrastructure. To enable progress towards trustworthy DL
for PE and SE, we build a physics-informed method, named Power-GNN, which
reconstructs physical, thus interpretable, parameters within Effective Power
Flow (EPF) models, such as admittances of effective power lines, and NN
parameters, representing implicitly unobserved elements of the system. In our
experiments, we test the Power-GNN on different realistic power networks,
including these with thousands of loads and hundreds of generators. We show
that the Power-GNN outperforms vanilla NN scheme unaware of the EPF physics.
Related papers
- SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
We present SafePowerGraph, the first simulator-agnostic, safety-oriented framework and benchmark for Graph Neural Networks (GNNs) in power systems (PS) operations.
SafePowerGraph integrates multiple PF and OPF simulators and assesses GNN performance under diverse scenarios, including energy price variations and power line outages.
arXiv Detail & Related papers (2024-07-17T09:01:38Z) - Foundation Models for the Electric Power Grid [53.02072064670517]
Foundation models (FMs) currently dominate news headlines.
We argue that an FM learning from diverse grid data and topologies could unlock transformative capabilities.
We discuss a power grid FM concept, namely GridFM, based on graph neural networks and show how different downstream tasks benefit.
arXiv Detail & Related papers (2024-07-12T17:09:47Z) - Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
This paper proposes a physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs.
The performance of the proposed model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA.
arXiv Detail & Related papers (2024-06-05T04:28:57Z) - Automated Deep Learning for Load Forecasting [0.34952465649465553]
This paper explains why and how we used Automated Deep Learning (AutoDL) to find performing Deep Neural Networks (DNNs) for load forecasting.
We end up creating an AutoDL framework called EnergyDragon by extending the DRAGON package and applying it to load forecasting.
We demonstrate on the French load signal that EnergyDragon can find original DNNs that outperform state-of-the-art load forecasting methods.
arXiv Detail & Related papers (2024-05-14T07:51:55Z) - Physics-Informed Neural Networks for Time-Domain Simulations: Accuracy,
Computational Cost, and Flexibility [0.0]
Physics-Informed Neural Networks (PINNs) have emerged as a promising solution for drastically accelerating computations of non-linear dynamical systems.
This work investigates the applicability of these methods for power system dynamics, focusing on the dynamic response to load disturbances.
To facilitate a deeper understanding, this paper also present a new regularisation of Neural Network (NN) training by introducing a gradient-based term in the loss function.
arXiv Detail & Related papers (2023-03-15T23:53:32Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
We show how graph convolutional networks and hyperstructures representation learning framework can be employed for accurate, reliable, and computationally efficient distribution grid planning.
Our numerical experiments show that the proposed Hyper-GCNNs approach yields substantial gains in computational efficiency.
arXiv Detail & Related papers (2022-11-14T01:29:09Z) - Gradient-Enhanced Physics-Informed Neural Networks for Power Systems
Operational Support [36.96271320953622]
This paper introduces a machine learning method to approximate the behavior of power systems dynamics in near real time.
The proposed framework is based on gradient-enhanced physics-informed neural networks (gPINNs) and encodes the underlying physical laws governing power systems.
arXiv Detail & Related papers (2022-06-21T17:56:55Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Knowledge- and Data-driven Services for Energy Systems using Graph
Neural Networks [0.9809636731336702]
We propose a data- and knowledge-driven probabilistic graphical model for energy systems based on the framework of graph neural networks (GNNs)
The model can explicitly factor in domain knowledge, in the form of grid topology or physics constraints, thus resulting in sparser architectures and much smaller parameters dimensionality.
Results obtained from a real-world smart-grid demonstration project show how the GNN was used to inform grid congestion predictions and market bidding services.
arXiv Detail & Related papers (2021-03-12T13:00:01Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.