Navigating Public Sentiment in the Circular Economy through Topic Modelling and Hyperparameter Optimisation
- URL: http://arxiv.org/abs/2405.10452v1
- Date: Thu, 16 May 2024 21:38:21 GMT
- Title: Navigating Public Sentiment in the Circular Economy through Topic Modelling and Hyperparameter Optimisation
- Authors: Junhao Song, Yingfang Yuan, Kaiwen Chang, Bing Xu, Jin Xuan, Wei Pang,
- Abstract summary: This study is pioneering in investigating various levels of public opinions concerning CE through topic modelling.
We collected data related to the circular economy from diverse platforms including Twitter, Reddit, and The Guardian.
The results of this study indicate that concerns about sustainability and economic impact persist across all three datasets.
- Score: 3.73232429960464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To advance the circular economy (CE), it is crucial to gain insights into the evolution of public sentiments, cognitive pathways of the masses concerning circular products and digital technology, and recognise the primary concerns. To achieve this, we collected data related to the CE from diverse platforms including Twitter, Reddit, and The Guardian. This comprehensive data collection spanned across three distinct strata of the public: the general public, professionals, and official sources. Subsequently, we utilised three topic models on the collected data. Topic modelling represents a type of data-driven and machine learning approach for text mining, capable of automatically categorising a large number of documents into distinct semantic groups. Simultaneously, these groups are described by topics, and these topics can aid in understanding the semantic content of documents at a high level. However, the performance of topic modelling may vary depending on different hyperparameter values. Therefore, in this study, we proposed a framework for topic modelling with hyperparameter optimisation for CE and conducted a series of systematic experiments to ensure that topic models are set with appropriate hyperparameters and to gain insights into the correlations between the CE and public opinion based on well-established models. The results of this study indicate that concerns about sustainability and economic impact persist across all three datasets. Official sources demonstrate a higher level of engagement with the application and regulation of CE. To the best of our knowledge, this study is pioneering in investigating various levels of public opinions concerning CE through topic modelling with the exploration of hyperparameter optimisation.
Related papers
- SITE: towards Spatial Intelligence Thorough Evaluation [121.1493852562597]
Spatial intelligence (SI) represents a cognitive ability encompassing the visualization, manipulation, and reasoning about spatial relationships.<n>We introduce SITE, a benchmark dataset towards SI Thorough Evaluation.<n>Our approach to curating the benchmark combines a bottom-up survey about 31 existing datasets and a top-down strategy drawing upon three classification systems in cognitive science.
arXiv Detail & Related papers (2025-05-08T17:45:44Z) - Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
We argue that the efforts aiming to study AI's ethical ramifications should be made in tandem with those evaluating its impacts on the environment.
We propose best practices to better integrate AI ethics and sustainability in AI research and practice.
arXiv Detail & Related papers (2025-04-01T13:53:11Z) - The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
Large Language Models (LLMs) must balance between rejecting harmful requests for safety and accommodating legitimate ones for utility.
This paper presents a Direct Preference Optimization (DPO) based alignment framework that achieves better overall performance.
We analyze experimental results obtained from testing DeepSeek-R1 on our benchmark and reveal the critical ethical concerns raised by this highly acclaimed model.
arXiv Detail & Related papers (2025-01-20T06:35:01Z) - Advancing Sustainability via Recommender Systems: A Survey [23.364932316026973]
Human behavioral patterns and consumption paradigms have emerged as pivotal determinants in environmental degradation and climate change.
There exists an imperative need for sustainable recommender systems that incorporate sustainability principles to foster eco-conscious and socially responsible choices.
This comprehensive survey addresses this critical research gap by presenting a systematic analysis of sustainable recommender systems.
arXiv Detail & Related papers (2024-11-12T09:19:32Z) - From the evolution of public data ecosystems to the evolving horizons of the forward-looking intelligent public data ecosystem empowered by emerging technologies [0.0]
Public data ecosystems (PDEs) represent complex socio-technical systems crucial for optimizing data use in the public sector and outside it.
Previous research pro-posed a six-generation Evolutionary Model of Public Data Ecosystems (EMPDE)
This study addresses this gap by validating the theoretical model through a real-life examination in five European countries.
arXiv Detail & Related papers (2024-05-22T12:58:02Z) - Hyperparameter Importance Analysis for Multi-Objective AutoML [14.336028105614824]
In this paper, we propose the first method for assessing the importance of hyper parameters in multi-objective optimization tasks.
Specifically, we compute the a-priori scalarization of the objectives and determine the importance of the hyper parameters for different objective tradeoffs.
arXiv Detail & Related papers (2024-05-13T11:00:25Z) - A Survey on Personalized Content Synthesis with Diffusion Models [57.01364199734464]
PCS aims to customize the subject of interest to specific user-defined prompts.
Over the past two years, more than 150 methods have been proposed.
This paper offers a comprehensive survey of PCS, with a particular focus on the diffusion models.
arXiv Detail & Related papers (2024-05-09T04:36:04Z) - EcoVerse: An Annotated Twitter Dataset for Eco-Relevance Classification, Environmental Impact Analysis, and Stance Detection [0.0]
EcoVerse is an annotated English Twitter dataset of 3,023 tweets spanning a wide spectrum of environmental topics.
We propose a three-level annotation scheme designed for Eco-Relevance Classification, Stance Detection, and introducing an original approach for Environmental Impact Analysis.
arXiv Detail & Related papers (2024-04-08T01:21:11Z) - Comparison of Topic Modelling Approaches in the Banking Context [0.0]
This study presents the use of Kernel Principal Component Analysis ( KernelPCA) and K-means Clustering in the BERTopic architecture.
We have prepared a new dataset using tweets from customers of Nigerian banks and we use this to compare the topic modelling approaches.
Our findings showed KernelPCA and K-means in the BERTopic architecture-produced coherent topics with a coherence score of 0.8463.
arXiv Detail & Related papers (2024-02-05T16:43:53Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Analysis of the Memorization and Generalization Capabilities of AI
Agents: Are Continual Learners Robust? [91.682459306359]
In continual learning (CL), an AI agent learns from non-stationary data streams under dynamic environments.
In this paper, a novel CL framework is proposed to achieve robust generalization to dynamic environments while retaining past knowledge.
The generalization and memorization performance of the proposed framework are theoretically analyzed.
arXiv Detail & Related papers (2023-09-18T21:00:01Z) - A Topical Approach to Capturing Customer Insight In Social Media [0.0]
This research addresses the challenge of fully unsupervised topic extraction in noisy, Big Data contexts.
We present three approaches we built on the Variational Autoencoder framework.
We show that our models achieve equal to better performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-07-14T11:15:28Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Heterogeneous Demand Effects of Recommendation Strategies in a Mobile
Application: Evidence from Econometric Models and Machine-Learning
Instruments [73.7716728492574]
We study the effectiveness of various recommendation strategies in the mobile channel and their impact on consumers' utility and demand levels for individual products.
We find significant differences in effectiveness among various recommendation strategies.
We develop novel econometric instruments that capture product differentiation (isolation) based on deep-learning models of user-generated reviews.
arXiv Detail & Related papers (2021-02-20T22:58:54Z) - Towards a Peer-to-Peer Energy Market: an Overview [68.8204255655161]
This work focuses on the electric power market, comparing the status quo with the recent trend towards the increase in distributed self-generation capabilities by prosumers.
We introduce a potential multi-layered architecture for a Peer-to-Peer (P2P) energy market, discussing the fundamental aspects of local production and local consumption as part of a microgrid.
To give a full picture to the reader, we also scrutinise relevant elements of energy trading, such as Smart Contract and grid stability.
arXiv Detail & Related papers (2020-03-02T20:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.