SITE: towards Spatial Intelligence Thorough Evaluation
- URL: http://arxiv.org/abs/2505.05456v1
- Date: Thu, 08 May 2025 17:45:44 GMT
- Title: SITE: towards Spatial Intelligence Thorough Evaluation
- Authors: Wenqi Wang, Reuben Tan, Pengyue Zhu, Jianwei Yang, Zhengyuan Yang, Lijuan Wang, Andrey Kolobov, Jianfeng Gao, Boqing Gong,
- Abstract summary: Spatial intelligence (SI) represents a cognitive ability encompassing the visualization, manipulation, and reasoning about spatial relationships.<n>We introduce SITE, a benchmark dataset towards SI Thorough Evaluation.<n>Our approach to curating the benchmark combines a bottom-up survey about 31 existing datasets and a top-down strategy drawing upon three classification systems in cognitive science.
- Score: 121.1493852562597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial intelligence (SI) represents a cognitive ability encompassing the visualization, manipulation, and reasoning about spatial relationships, underpinning disciplines from neuroscience to robotics. We introduce SITE, a benchmark dataset towards SI Thorough Evaluation in a standardized format of multi-choice visual question-answering, designed to assess large vision-language models' spatial intelligence across diverse visual modalities (single-image, multi-image, and video) and SI factors (figural to environmental scales, spatial visualization and orientation, intrinsic and extrinsic, static and dynamic). Our approach to curating the benchmark combines a bottom-up survey about 31 existing datasets and a top-down strategy drawing upon three classification systems in cognitive science, which prompt us to design two novel types of tasks about view-taking and dynamic scenes. Extensive experiments reveal that leading models fall behind human experts especially in spatial orientation, a fundamental SI factor. Moreover, we demonstrate a positive correlation between a model's spatial reasoning proficiency and its performance on an embodied AI task.
Related papers
- Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing [62.447497430479174]
Drawing to reason in space is a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space.<n>Our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks.
arXiv Detail & Related papers (2025-06-11T17:41:50Z) - EOC-Bench: Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World? [52.99661576320663]
multimodal large language models (MLLMs) have driven breakthroughs in egocentric vision applications.<n>EOC-Bench is an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios.<n>We conduct comprehensive evaluations of various proprietary, open-source, and object-level MLLMs based on EOC-Bench.
arXiv Detail & Related papers (2025-06-05T17:44:12Z) - Spatial Understanding from Videos: Structured Prompts Meet Simulation Data [79.52833996220059]
We present a unified framework for enhancing 3D spatial reasoning in pre-trained vision-language models without modifying their architecture.<n>This framework combines SpatialMind, a structured prompting strategy that decomposes complex scenes and questions into interpretable reasoning steps, with ScanForgeQA, a scalable question-answering dataset built from diverse 3D simulation scenes.
arXiv Detail & Related papers (2025-06-04T07:36:33Z) - ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models [47.237216851265316]
Vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and reasoning about visual content.<n>Current VLMs excel primarily at egocentric spatial reasoning (from the camera's perspective) but fail to generalize to allocentric viewpoints.<n>We introduce ViewSpatial-Bench, the first comprehensive benchmark designed specifically for multi-viewpoint spatial localization recognition evaluation.
arXiv Detail & Related papers (2025-05-27T17:59:26Z) - SpatialScore: Towards Unified Evaluation for Multimodal Spatial Understanding [64.15606979785355]
Multimodal large language models (MLLMs) have achieved impressive success in question-answering tasks, yet their capabilities for spatial understanding are less explored.<n>This work investigates a critical question: do existing MLLMs possess 3D spatial perception and understanding abilities?
arXiv Detail & Related papers (2025-05-22T17:59:03Z) - Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
We present a detailed analysis that first delineates the core elements of spatial reasoning.<n>We then assesses the performance of these models in both synthetic and real-world images.
arXiv Detail & Related papers (2025-03-25T14:34:06Z) - SPHERE: Unveiling Spatial Blind Spots in Vision-Language Models Through Hierarchical Evaluation [7.659514491338669]
Current vision-language models may grasp basic spatial cues but struggle with the multi-dimensional spatial reasoning necessary for human-like understanding and real-world applications.<n>We develop SPHERE, a hierarchical evaluation framework supported by a new human-annotated dataset.<n> Benchmark evaluation of state-of-the-art models reveals significant deficiencies, especially in reasoning about distance and proximity.
arXiv Detail & Related papers (2024-12-17T09:10:55Z) - CogNav: Cognitive Process Modeling for Object Goal Navigation with LLMs [33.123447047397484]
Object goal navigation (ObjectNav) is a fundamental task in embodied AI, requiring an agent to locate a target object in previously unseen environments.<n>We propose CogNav, a framework designed to mimic the cognitive process using large language models.<n>CogNav significantly improves the success rate of ObjectNav at least by relative 14% over the state-of-the-arts.
arXiv Detail & Related papers (2024-12-11T09:50:35Z) - Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning [4.422649561583363]
We present a novel benchmark for assessing spatial reasoning in language models (LMs)
It is grounded in realistic 3D simulation data, offering a series of diverse room layouts with various objects and their spatial relationships.
A key contribution is our logic-based consistency-checking tool, which enables the assessment of multiple plausible solutions.
arXiv Detail & Related papers (2024-05-23T21:22:00Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - Towards Ubiquitous Semantic Metaverse: Challenges, Approaches, and
Opportunities [68.03971716740823]
In recent years, ubiquitous semantic Metaverse has been studied to revolutionize immersive cyber-virtual experiences for augmented reality (AR) and virtual reality (VR) users.
This survey focuses on the representation and intelligence for the four fundamental system components in ubiquitous Metaverse.
arXiv Detail & Related papers (2023-07-13T11:14:46Z) - Top-Down Visual Attention from Analysis by Synthesis [87.47527557366593]
We consider top-down attention from a classic Analysis-by-Synthesis (AbS) perspective of vision.
We propose Analysis-by-Synthesis Vision Transformer (AbSViT), which is a top-down modulated ViT model that variationally approximates AbS, and controllable achieves top-down attention.
arXiv Detail & Related papers (2023-03-23T05:17:05Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.