The AI Collaborator: Bridging Human-AI Interaction in Educational and Professional Settings
- URL: http://arxiv.org/abs/2405.10460v1
- Date: Thu, 16 May 2024 22:14:54 GMT
- Title: The AI Collaborator: Bridging Human-AI Interaction in Educational and Professional Settings
- Authors: Mohammad Amin Samadi, Spencer JaQuay, Jing Gu, Nia Nixon,
- Abstract summary: AI Collaborator, powered by OpenAI's GPT-4, is a groundbreaking tool designed for human-AI collaboration research.
Its standout feature is the ability for researchers to create customized AI personas for diverse experimental setups.
This functionality is essential for simulating various interpersonal dynamics in team settings.
- Score: 3.506120162002989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI Collaborator, powered by OpenAI's GPT-4, is a groundbreaking tool designed for human-AI collaboration research. Its standout feature is the ability for researchers to create customized AI personas for diverse experimental setups using a user-friendly interface. This functionality is essential for simulating various interpersonal dynamics in team settings. AI Collaborator excels in mimicking different team behaviors, enabled by its advanced memory system and a sophisticated personality framework. Researchers can tailor AI personas along a spectrum from dominant to cooperative, enhancing the study of their impact on team processes. The tool's modular design facilitates integration with digital platforms like Slack, making it versatile for various research scenarios. AI Collaborator is thus a crucial resource for exploring human-AI team dynamics more profoundly.
Related papers
- CREW: Facilitating Human-AI Teaming Research [3.7324091969140776]
We introduce CREW, a platform to facilitate Human-AI teaming research and engage collaborations from multiple scientific disciplines.
It includes pre-built tasks for cognitive studies and Human-AI teaming with expandable potentials from our modular design.
CREW benchmarks real-time human-guided reinforcement learning agents using state-of-the-art algorithms and well-tuned baselines.
arXiv Detail & Related papers (2024-07-31T21:43:55Z) - Mixed-Initiative Human-Robot Teaming under Suboptimality with Online Bayesian Adaptation [0.6591036379613505]
We develop computational modeling and optimization techniques for enhancing the performance of suboptimal human-agent teams.
We adopt an online Bayesian approach that enables a robot to infer people's willingness to comply with its assistance in a sequential decision-making game.
Our user studies show that user preferences and team performance indeed vary with robot intervention styles.
arXiv Detail & Related papers (2024-03-24T14:38:18Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - Human-Machine Teaming for UAVs: An Experimentation Platform [6.809734620480709]
We present the Cogment human-machine teaming experimentation platform.
It implements human-machine teaming (HMT) use cases that can involve learning AI agents, static AI agents, and humans.
We hope to facilitate further research on human-machine teaming in critical systems and defense environments.
arXiv Detail & Related papers (2023-12-18T21:35:02Z) - Human AI Collaboration in Software Engineering: Lessons Learned from a
Hands On Workshop [1.14603174659129]
The study identifies key themes such as the evolving nature of human AI interaction, the capabilities of AI in software engineering tasks, and the challenges and limitations of integrating AI in this domain.
The findings show that while AI, particularly ChatGPT, improves the efficiency of code generation and optimization, human oversight remains crucial, especially in areas requiring complex problem solving and security considerations.
arXiv Detail & Related papers (2023-12-17T06:31:05Z) - Adoption of AI Technology in the Music Mixing Workflow: An Investigation [0.0]
The study investigates the current state of AI in the mixing music and its adoption by different user groups.
Our findings show that while AI mixing tools can simplify the process, pro-ams seek precise control and customization options.
The study provides strategies for designing effective AI mixing tools for different user groups and outlines future directions.
arXiv Detail & Related papers (2023-04-06T22:47:59Z) - DIAMBRA Arena: a New Reinforcement Learning Platform for Research and
Experimentation [91.3755431537592]
This work presents DIAMBRA Arena, a new platform for reinforcement learning research and experimentation.
It features a collection of high-quality environments exposing a Python API fully compliant with OpenAI Gym standard.
They are episodic tasks with discrete actions and observations composed by raw pixels plus additional numerical values.
arXiv Detail & Related papers (2022-10-19T14:39:10Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
We guide the curriculum reinforcement learning results towards a preferred performance level that is neither too hard nor too easy via learning from the human decision process.
Our system is highly parallelizable, making it possible for a human to train large-scale reinforcement learning applications.
It shows reinforcement learning performance can successfully adjust in sync with the human desired difficulty level.
arXiv Detail & Related papers (2022-08-04T23:53:51Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Learning to Complement Humans [67.38348247794949]
A rising vision for AI in the open world centers on the development of systems that can complement humans for perceptual, diagnostic, and reasoning tasks.
We demonstrate how an end-to-end learning strategy can be harnessed to optimize the combined performance of human-machine teams.
arXiv Detail & Related papers (2020-05-01T20:00:23Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
We argue that AI systems should be trained in a human-centered manner, directly optimized for team performance.
We study this proposal for a specific type of human-AI teaming, where the human overseer chooses to either accept the AI recommendation or solve the task themselves.
Our experiments with linear and non-linear models on real-world, high-stakes datasets show that the most accuracy AI may not lead to highest team performance.
arXiv Detail & Related papers (2020-04-27T19:06:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.