The AI Collaborator: Bridging Human-AI Interaction in Educational and Professional Settings
- URL: http://arxiv.org/abs/2405.10460v1
- Date: Thu, 16 May 2024 22:14:54 GMT
- Title: The AI Collaborator: Bridging Human-AI Interaction in Educational and Professional Settings
- Authors: Mohammad Amin Samadi, Spencer JaQuay, Jing Gu, Nia Nixon,
- Abstract summary: AI Collaborator, powered by OpenAI's GPT-4, is a groundbreaking tool designed for human-AI collaboration research.
Its standout feature is the ability for researchers to create customized AI personas for diverse experimental setups.
This functionality is essential for simulating various interpersonal dynamics in team settings.
- Score: 3.506120162002989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI Collaborator, powered by OpenAI's GPT-4, is a groundbreaking tool designed for human-AI collaboration research. Its standout feature is the ability for researchers to create customized AI personas for diverse experimental setups using a user-friendly interface. This functionality is essential for simulating various interpersonal dynamics in team settings. AI Collaborator excels in mimicking different team behaviors, enabled by its advanced memory system and a sophisticated personality framework. Researchers can tailor AI personas along a spectrum from dominant to cooperative, enhancing the study of their impact on team processes. The tool's modular design facilitates integration with digital platforms like Slack, making it versatile for various research scenarios. AI Collaborator is thus a crucial resource for exploring human-AI team dynamics more profoundly.
Related papers
- ChatCollab: Exploring Collaboration Between Humans and AI Agents in Software Teams [1.3967206132709542]
ChatCollab's novel architecture allows agents - human or AI - to join collaborations in any role.
Using software engineering as a case study, we find that our AI agents successfully identify their roles and responsibilities.
In relation to three prior multi-agent AI systems for software development, we find ChatCollab AI agents produce comparable or better software in an interactive game development task.
arXiv Detail & Related papers (2024-12-02T21:56:46Z) - The AI Interface: Designing for the Ideal Machine-Human Experience (Editorial) [1.8074330674710588]
This editorial introduces a Special Issue that explores the psychology of AI experience design.
Papers in this collection highlight the complexities of trust, transparency, and emotional sensitivity in human-AI interaction.
By findings from eight diverse studies, this editorial underscores the need for AI interfaces to balance efficiency with empathy.
arXiv Detail & Related papers (2024-11-29T15:17:32Z) - CREW: Facilitating Human-AI Teaming Research [3.7324091969140776]
We introduce CREW, a platform to facilitate Human-AI teaming research in real-time decision-making scenarios.
It includes pre-built tasks for cognitive studies and Human-AI teaming with expandable potentials from our modular design.
CREW benchmarks real-time human-guided reinforcement learning agents using state-of-the-art algorithms and well-tuned baselines.
arXiv Detail & Related papers (2024-07-31T21:43:55Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - Human-Machine Teaming for UAVs: An Experimentation Platform [6.809734620480709]
We present the Cogment human-machine teaming experimentation platform.
It implements human-machine teaming (HMT) use cases that can involve learning AI agents, static AI agents, and humans.
We hope to facilitate further research on human-machine teaming in critical systems and defense environments.
arXiv Detail & Related papers (2023-12-18T21:35:02Z) - Adoption of AI Technology in the Music Mixing Workflow: An Investigation [0.0]
The study investigates the current state of AI in the mixing music and its adoption by different user groups.
Our findings show that while AI mixing tools can simplify the process, pro-ams seek precise control and customization options.
The study provides strategies for designing effective AI mixing tools for different user groups and outlines future directions.
arXiv Detail & Related papers (2023-04-06T22:47:59Z) - DIAMBRA Arena: a New Reinforcement Learning Platform for Research and
Experimentation [91.3755431537592]
This work presents DIAMBRA Arena, a new platform for reinforcement learning research and experimentation.
It features a collection of high-quality environments exposing a Python API fully compliant with OpenAI Gym standard.
They are episodic tasks with discrete actions and observations composed by raw pixels plus additional numerical values.
arXiv Detail & Related papers (2022-10-19T14:39:10Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
We guide the curriculum reinforcement learning results towards a preferred performance level that is neither too hard nor too easy via learning from the human decision process.
Our system is highly parallelizable, making it possible for a human to train large-scale reinforcement learning applications.
It shows reinforcement learning performance can successfully adjust in sync with the human desired difficulty level.
arXiv Detail & Related papers (2022-08-04T23:53:51Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Learning to Complement Humans [67.38348247794949]
A rising vision for AI in the open world centers on the development of systems that can complement humans for perceptual, diagnostic, and reasoning tasks.
We demonstrate how an end-to-end learning strategy can be harnessed to optimize the combined performance of human-machine teams.
arXiv Detail & Related papers (2020-05-01T20:00:23Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
We argue that AI systems should be trained in a human-centered manner, directly optimized for team performance.
We study this proposal for a specific type of human-AI teaming, where the human overseer chooses to either accept the AI recommendation or solve the task themselves.
Our experiments with linear and non-linear models on real-world, high-stakes datasets show that the most accuracy AI may not lead to highest team performance.
arXiv Detail & Related papers (2020-04-27T19:06:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.