論文の概要: Federated Learning With Energy Harvesting Devices: An MDP Framework
- arxiv url: http://arxiv.org/abs/2405.10513v1
- Date: Fri, 17 May 2024 03:41:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 17:11:53.581958
- Title: Federated Learning With Energy Harvesting Devices: An MDP Framework
- Title(参考訳): エネルギーハーベストングデバイスによるフェデレーション学習: MDPフレームワーク
- Authors: Kai Zhang, Xuanyu Cao,
- Abstract要約: フェデレートラーニング(FL)では、エッジデバイスがローカルトレーニングを実行し、パラメータサーバと情報を交換する必要がある。
実用FLシステムにおける重要な課題は、バッテリ限定エッジ装置の急激なエネルギー枯渇である。
FLシステムにエネルギー回収技術を適用し, エッジデバイスを連続的に駆動する環境エネルギーを抽出する。
- 参考スコア(独自算出の注目度): 5.852486435612777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) requires edge devices to perform local training and exchange information with a parameter server, leading to substantial energy consumption. A critical challenge in practical FL systems is the rapid energy depletion of battery-limited edge devices, which curtails their operational lifespan and affects the learning performance. To address this issue, we apply energy harvesting technique in FL systems to extract ambient energy for continuously powering edge devices. We first establish the convergence bound for the wireless FL system with energy harvesting devices, illustrating that the convergence is impacted by partial device participation and packet drops, both of which depend on the energy supply. To accelerate the convergence, we formulate a joint device scheduling and power control problem and model it as a Markov decision process (MDP). By solving this MDP, we derive the optimal transmission policy and demonstrate that it possesses a monotone structure with respect to the battery and channel states. To overcome the curse of dimensionality caused by the exponential complexity of computing the optimal policy, we propose a low-complexity algorithm, which is asymptotically optimal as the number of devices increases. Furthermore, for unknown channels and harvested energy statistics, we develop a structure-enhanced deep reinforcement learning algorithm that leverages the monotone structure of the optimal policy to improve the training performance. Finally, extensive numerical experiments on real-world datasets are presented to validate the theoretical results and corroborate the effectiveness of the proposed algorithms.
- Abstract(参考訳): フェデレートラーニング(FL)では、エッジデバイスがローカルなトレーニングを行い、パラメータサーバと情報を交換する必要があるため、かなりのエネルギー消費につながる。
実用FLシステムにおける重要な課題は、バッテリ寿命を縮め、学習性能に影響を及ぼす、バッテリ限定エッジデバイスの急速なエネルギー枯渇である。
この問題に対処するために, FLシステムにエネルギー回収技術を適用し, エッジデバイスを連続的に駆動する環境エネルギーを抽出する。
まず,無線FLシステムのコンバージェンスにエネルギー回収装置を配置し,そのコンバージェンスに部分的なデバイス参加とパケットドロップが影響し,エネルギー供給に依存していることを示す。
収束を加速するため、共同装置のスケジューリングと電力制御問題を定式化し、マルコフ決定過程(MDP)としてモデル化する。
このMDPを解くことで、最適な伝送ポリシーを導出し、電池やチャネル状態に対して単調な構造を持つことを示す。
最適ポリシーの計算の指数関数的複雑化に起因する次元性の呪いを克服するため,デバイス数の増加に伴って漸近的に最適な低複雑性アルゴリズムを提案する。
さらに、未知のチャネルと収穫エネルギー統計量に対して、最適ポリシーの単調構造を利用してトレーニング性能を向上させる構造強化学習アルゴリズムを開発する。
最後に、実世界のデータセットに関する広範な数値実験を行い、理論的結果を検証するとともに、提案アルゴリズムの有効性を裏付ける。
関連論文リスト
- Adaptive Decentralized Federated Learning in Energy and Latency Constrained Wireless Networks [4.03161352925235]
中央ノードで集約されたパラメータを持つフェデレートラーニング(FL)では、通信オーバーヘッドがかなり懸念される。
最近の研究では、分散フェデレートラーニング(DFL)が実現可能な代替手段として紹介されている。
エネルギーと遅延の制約を考慮してDFLの損失関数を最小化する問題を定式化する。
論文 参考訳(メタデータ) (2024-03-29T09:17:40Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
ネットワーク規模が大きくなるにつれて、パケット衝突によるLoRaネットワークのエネルギー効率は急激に低下する。
マルチエージェント強化学習(MALoRa)に基づく伝送パラメータ割り当てアルゴリズムを提案する。
シミュレーションの結果,MALoRaはベースラインアルゴリズムと比較してシステムEEを著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:37:23Z) - Joint Optimization of Energy Consumption and Completion Time in
Federated Learning [16.127019859725785]
フェデレートラーニング(FL)は、プライバシ保護の特性から興味深い分散機械学習アプローチである。
エネルギーと実行遅延の間のトレードオフをバランスさせるアルゴリズムを定式化し、異なる要求とアプリケーションシナリオに対応する。
論文 参考訳(メタデータ) (2022-09-29T16:05:28Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
デバイス間の限られた通信資源、帯域幅とエネルギー、およびデータ不均一性は、連邦学習(FL)の主要なボトルネックである
まず、部分モデルアグリゲーション(PMA)を用いた新しいFLフレームワークを考案する。
提案されたPMA-FLは、2つの典型的な異種データセットにおいて2.72%と11.6%の精度を改善する。
論文 参考訳(メタデータ) (2022-04-20T19:09:52Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Efficient Federated Meta-Learning over Multi-Access Wireless Networks [26.513076310183273]
フェデレーションメタラーニング(FML)は、今日のエッジラーニング分野におけるデータ制限と不均一性に対処するための、有望なパラダイムとして登場した。
本稿では,FMLアルゴリズム(NUFM)を一様でないデバイス選択方式で開発し,収束を加速する。
本稿では,マルチアクセス無線システムにおけるNUFMの統合による資源配分問題を提案する。
論文 参考訳(メタデータ) (2021-08-14T03:23:04Z) - Wirelessly Powered Federated Edge Learning: Optimal Tradeoffs Between
Convergence and Power Transfer [42.30741737568212]
無線電力伝送(WPT)を用いた電力機器の解法を提案する。
本研究の目的は、無線で駆動するFEEL(WP-FEEL)システムの導入に関するガイドラインの導出である。
その結果、WPTプロビジョニングに関する有用なガイドラインを提供し、学習パフォーマンスの保証を提供します。
論文 参考訳(メタデータ) (2021-02-24T15:47:34Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
巨大なモバイルエッジデバイス上でのフェデレーション学習(FL)は、多数のインテリジェントなモバイルアプリケーションのための新たな地平を開く。
FLは、定期的なグローバル同期と継続的なローカルトレーニングにより、参加するデバイスに膨大な通信と計算負荷を課す。
フレキシブルな通信圧縮を可能にする収束保証FLアルゴリズムを開発。
論文 参考訳(メタデータ) (2020-12-22T02:54:18Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
分散データを収集し、エッジで機械学習を実行するエッジインテリジェンスが提案されている。
本稿では,経験的分類誤差モデルに基づいて無線リソースを割り当てるLCPA法を提案する。
実験の結果,提案したLCPAアルゴリズムは,他のパワーアロケーションアルゴリズムよりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-21T07:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。